| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrels3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfrefrels3 | ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 38549 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
| 2 | idinxpss 38345 | . 2 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)) | |
| 3 | 1, 2 | rabbieq 3403 | 1 ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3047 {crab 3395 ∩ cin 3901 ⊆ wss 3902 class class class wbr 5091 I cid 5510 × cxp 5614 dom cdm 5616 ran crn 5617 Rels crels 38216 RefRels crefrels 38219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-rels 38521 df-ssr 38534 df-refs 38546 df-refrels 38547 |
| This theorem is referenced by: elrefrels3 38555 |
| Copyright terms: Public domain | W3C validator |