Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrefrels3 Structured version   Visualization version   GIF version

Theorem dfrefrels3 38512
Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.)
Assertion
Ref Expression
dfrefrels3 RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦)}
Distinct variable group:   𝑥,𝑟,𝑦

Proof of Theorem dfrefrels3
StepHypRef Expression
1 dfrefrels2 38511 . 2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 idinxpss 38307 . 2 (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦))
31, 2rabbieq 3417 1 RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3045  {crab 3408  cin 3916  wss 3917   class class class wbr 5110   I cid 5535   × cxp 5639  dom cdm 5641  ran crn 5642   Rels crels 38178   RefRels crefrels 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-rels 38483  df-ssr 38496  df-refs 38508  df-refrels 38509
This theorem is referenced by:  elrefrels3  38517
  Copyright terms: Public domain W3C validator