Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrefrels3 Structured version   Visualization version   GIF version

Theorem dfrefrels3 36244
Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.)
Assertion
Ref Expression
dfrefrels3 RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦)}
Distinct variable group:   𝑥,𝑟,𝑦

Proof of Theorem dfrefrels3
StepHypRef Expression
1 dfrefrels2 36243 . 2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 idinxpss 36060 . 2 (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦))
31, 2rabbieq 36002 1 RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wral 3053  {crab 3057  cin 3840  wss 3841   class class class wbr 5027   I cid 5424   × cxp 5517  dom cdm 5519  ran crn 5520   Rels crels 35947   RefRels crefrels 35950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-br 5028  df-opab 5090  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-rels 36215  df-ssr 36228  df-refs 36240  df-refrels 36241
This theorem is referenced by:  elrefrels3  36248
  Copyright terms: Public domain W3C validator