|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrels3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| dfrefrels3 | ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfrefrels2 38515 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
| 2 | idinxpss 38314 | . 2 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)) | |
| 3 | 1, 2 | rabbieq 3444 | 1 ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∀wral 3060 {crab 3435 ∩ cin 3949 ⊆ wss 3950 class class class wbr 5142 I cid 5576 × cxp 5682 dom cdm 5684 ran crn 5685 Rels crels 38185 RefRels crefrels 38188 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-rels 38487 df-ssr 38500 df-refs 38512 df-refrels 38513 | 
| This theorem is referenced by: elrefrels3 38521 | 
| Copyright terms: Public domain | W3C validator |