| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrels3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfrefrels3 | ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 38625 | . 2 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
| 2 | idinxpss 38370 | . 2 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)) | |
| 3 | 1, 2 | rabbieq 3404 | 1 ⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3048 {crab 3396 ∩ cin 3897 ⊆ wss 3898 class class class wbr 5093 I cid 5513 × cxp 5617 dom cdm 5619 ran crn 5620 Rels crels 38244 RefRels crefrels 38247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-rels 38484 df-ssr 38610 df-refs 38622 df-refrels 38623 |
| This theorem is referenced by: elrefrels3 38631 |
| Copyright terms: Public domain | W3C validator |