![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extssr | Structured version Visualization version GIF version |
Description: Property of subset relation, see also extid 37179, extep 37151 and the comment of df-ssr 37368. (Contributed by Peter Mazsa, 10-Jul-2019.) |
Ref | Expression |
---|---|
extssr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brssr 37371 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 S 𝐴 ↔ 𝑥 ⊆ 𝐴)) | |
2 | brssr 37371 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥 S 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
3 | 1, 2 | bi2bian9 640 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
4 | 3 | albidv 1924 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
5 | relssr 37370 | . . 3 ⊢ Rel S | |
6 | releccnveq 37126 | . . 3 ⊢ ((Rel S ∧ Rel S ) → ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵))) | |
7 | 5, 5, 6 | mp2an 691 | . 2 ⊢ ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵)) |
8 | ssext 5455 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
9 | 4, 7, 8 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 class class class wbr 5149 ◡ccnv 5676 Rel wrel 5682 [cec 8701 S cssr 37046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-ssr 37368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |