Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extssr Structured version   Visualization version   GIF version

Theorem extssr 37918
Description: Property of subset relation, see also extid 37718, extep 37690 and the comment of df-ssr 37907. (Contributed by Peter Mazsa, 10-Jul-2019.)
Assertion
Ref Expression
extssr ((𝐴𝑉𝐵𝑊) → ([𝐴] S = [𝐵] S ↔ 𝐴 = 𝐵))

Proof of Theorem extssr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brssr 37910 . . . 4 (𝐴𝑉 → (𝑥 S 𝐴𝑥𝐴))
2 brssr 37910 . . . 4 (𝐵𝑊 → (𝑥 S 𝐵𝑥𝐵))
31, 2bi2bian9 639 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥 S 𝐴𝑥 S 𝐵) ↔ (𝑥𝐴𝑥𝐵)))
43albidv 1916 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥 S 𝐴𝑥 S 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵)))
5 relssr 37909 . . 3 Rel S
6 releccnveq 37665 . . 3 ((Rel S ∧ Rel S ) → ([𝐴] S = [𝐵] S ↔ ∀𝑥(𝑥 S 𝐴𝑥 S 𝐵)))
75, 5, 6mp2an 691 . 2 ([𝐴] S = [𝐵] S ↔ ∀𝑥(𝑥 S 𝐴𝑥 S 𝐵))
8 ssext 5450 . 2 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
94, 7, 83bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → ([𝐴] S = [𝐵] S ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  wss 3944   class class class wbr 5142  ccnv 5671  Rel wrel 5677  [cec 8716   S cssr 37586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8720  df-ssr 37907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator