Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extssr Structured version   Visualization version   GIF version

Theorem extssr 36627
Description: Property of subset relation, see also extid 36446, extep 36418 and the comment of df-ssr 36616. (Contributed by Peter Mazsa, 10-Jul-2019.)
Assertion
Ref Expression
extssr ((𝐴𝑉𝐵𝑊) → ([𝐴] S = [𝐵] S ↔ 𝐴 = 𝐵))

Proof of Theorem extssr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brssr 36619 . . . 4 (𝐴𝑉 → (𝑥 S 𝐴𝑥𝐴))
2 brssr 36619 . . . 4 (𝐵𝑊 → (𝑥 S 𝐵𝑥𝐵))
31, 2bi2bian9 638 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥 S 𝐴𝑥 S 𝐵) ↔ (𝑥𝐴𝑥𝐵)))
43albidv 1923 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥 S 𝐴𝑥 S 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵)))
5 relssr 36618 . . 3 Rel S
6 releccnveq 36397 . . 3 ((Rel S ∧ Rel S ) → ([𝐴] S = [𝐵] S ↔ ∀𝑥(𝑥 S 𝐴𝑥 S 𝐵)))
75, 5, 6mp2an 689 . 2 ([𝐴] S = [𝐵] S ↔ ∀𝑥(𝑥 S 𝐴𝑥 S 𝐵))
8 ssext 5370 . 2 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
94, 7, 83bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → ([𝐴] S = [𝐵] S ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  ccnv 5588  Rel wrel 5594  [cec 8496   S cssr 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-ssr 36616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator