Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extssr Structured version   Visualization version   GIF version

Theorem extssr 38621
Description: Property of subset relation, see also extid 38368, extep 38341 and the comment of df-ssr 38610. (Contributed by Peter Mazsa, 10-Jul-2019.)
Assertion
Ref Expression
extssr ((𝐴𝑉𝐵𝑊) → ([𝐴] S = [𝐵] S ↔ 𝐴 = 𝐵))

Proof of Theorem extssr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brssr 38613 . . . 4 (𝐴𝑉 → (𝑥 S 𝐴𝑥𝐴))
2 brssr 38613 . . . 4 (𝐵𝑊 → (𝑥 S 𝐵𝑥𝐵))
31, 2bi2bian9 640 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥 S 𝐴𝑥 S 𝐵) ↔ (𝑥𝐴𝑥𝐵)))
43albidv 1921 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥 S 𝐴𝑥 S 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵)))
5 relssr 38612 . . 3 Rel S
6 releccnveq 38315 . . 3 ((Rel S ∧ Rel S ) → ([𝐴] S = [𝐵] S ↔ ∀𝑥(𝑥 S 𝐴𝑥 S 𝐵)))
75, 5, 6mp2an 692 . 2 ([𝐴] S = [𝐵] S ↔ ∀𝑥(𝑥 S 𝐴𝑥 S 𝐵))
8 ssext 5397 . 2 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
94, 7, 83bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → ([𝐴] S = [𝐵] S ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  wss 3898   class class class wbr 5093  ccnv 5618  Rel wrel 5624  [cec 8626   S cssr 38245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-ssr 38610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator