![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extssr | Structured version Visualization version GIF version |
Description: Property of subset relation, see also extid 36984, extep 36956 and the comment of df-ssr 37173. (Contributed by Peter Mazsa, 10-Jul-2019.) |
Ref | Expression |
---|---|
extssr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brssr 37176 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 S 𝐴 ↔ 𝑥 ⊆ 𝐴)) | |
2 | brssr 37176 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥 S 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
3 | 1, 2 | bi2bian9 639 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
4 | 3 | albidv 1923 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
5 | relssr 37175 | . . 3 ⊢ Rel S | |
6 | releccnveq 36931 | . . 3 ⊢ ((Rel S ∧ Rel S ) → ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵))) | |
7 | 5, 5, 6 | mp2an 690 | . 2 ⊢ ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵)) |
8 | ssext 5447 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
9 | 4, 7, 8 | 3bitr4g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ⊆ wss 3944 class class class wbr 5141 ◡ccnv 5668 Rel wrel 5674 [cec 8684 S cssr 36851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ec 8688 df-ssr 37173 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |