![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extssr | Structured version Visualization version GIF version |
Description: Property of subset relation, see also extid 35012, extep 34984 and the comment of df-ssr 35183. (Contributed by Peter Mazsa, 10-Jul-2019.) |
Ref | Expression |
---|---|
extssr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brssr 35186 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 S 𝐴 ↔ 𝑥 ⊆ 𝐴)) | |
2 | brssr 35186 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥 S 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
3 | 1, 2 | bi2bian9 628 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
4 | 3 | albidv 1879 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
5 | relssr 35185 | . . 3 ⊢ Rel S | |
6 | releccnveq 34963 | . . 3 ⊢ ((Rel S ∧ Rel S ) → ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵))) | |
7 | 5, 5, 6 | mp2an 679 | . 2 ⊢ ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵)) |
8 | ssext 5198 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
9 | 4, 7, 8 | 3bitr4g 306 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 = wceq 1507 ∈ wcel 2050 ⊆ wss 3823 class class class wbr 4923 ◡ccnv 5400 Rel wrel 5406 [cec 8081 S cssr 34900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-xp 5407 df-rel 5408 df-cnv 5409 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-ec 8085 df-ssr 35183 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |