Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > extssr | Structured version Visualization version GIF version |
Description: Property of subset relation, see also extid 36446, extep 36418 and the comment of df-ssr 36616. (Contributed by Peter Mazsa, 10-Jul-2019.) |
Ref | Expression |
---|---|
extssr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brssr 36619 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 S 𝐴 ↔ 𝑥 ⊆ 𝐴)) | |
2 | brssr 36619 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥 S 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
3 | 1, 2 | bi2bian9 638 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
4 | 3 | albidv 1923 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵) ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵))) |
5 | relssr 36618 | . . 3 ⊢ Rel S | |
6 | releccnveq 36397 | . . 3 ⊢ ((Rel S ∧ Rel S ) → ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵))) | |
7 | 5, 5, 6 | mp2an 689 | . 2 ⊢ ([𝐴]◡ S = [𝐵]◡ S ↔ ∀𝑥(𝑥 S 𝐴 ↔ 𝑥 S 𝐵)) |
8 | ssext 5370 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
9 | 4, 7, 8 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 ◡ccnv 5588 Rel wrel 5594 [cec 8496 S cssr 36336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-ssr 36616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |