Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sin Structured version   Visualization version   GIF version

Definition df-sin 15417
 Description: Define the sine function. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
df-sin sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))

Detailed syntax breakdown of Definition df-sin
StepHypRef Expression
1 csin 15411 . 2 class sin
2 vx . . 3 setvar 𝑥
3 cc 10526 . . 3 class
4 ci 10530 . . . . . . 7 class i
52cv 1537 . . . . . . 7 class 𝑥
6 cmul 10533 . . . . . . 7 class ·
74, 5, 6co 7135 . . . . . 6 class (i · 𝑥)
8 ce 15409 . . . . . 6 class exp
97, 8cfv 6324 . . . . 5 class (exp‘(i · 𝑥))
104cneg 10862 . . . . . . 7 class -i
1110, 5, 6co 7135 . . . . . 6 class (-i · 𝑥)
1211, 8cfv 6324 . . . . 5 class (exp‘(-i · 𝑥))
13 cmin 10861 . . . . 5 class
149, 12, 13co 7135 . . . 4 class ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))
15 c2 11682 . . . . 5 class 2
1615, 4, 6co 7135 . . . 4 class (2 · i)
17 cdiv 11288 . . . 4 class /
1814, 16, 17co 7135 . . 3 class (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))
192, 3, 18cmpt 5110 . 2 class (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
201, 19wceq 1538 1 wff sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
 Colors of variables: wff setvar class This definition is referenced by:  sinval  15469  sinf  15471  dvsincos  24591  sincn  25046
 Copyright terms: Public domain W3C validator