MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinf Structured version   Visualization version   GIF version

Theorem sinf 16035
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinf sin:ℂ⟶ℂ

Proof of Theorem sinf
StepHypRef Expression
1 df-sin 15978 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2 ax-icn 11072 . . . . . 6 i ∈ ℂ
3 mulcl 11097 . . . . . 6 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
42, 3mpan 690 . . . . 5 (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ)
5 efcl 15991 . . . . 5 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
64, 5syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
7 negicn 11368 . . . . . 6 -i ∈ ℂ
8 mulcl 11097 . . . . . 6 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
97, 8mpan 690 . . . . 5 (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ)
10 efcl 15991 . . . . 5 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
119, 10syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
126, 11subcld 11479 . . 3 (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
13 2mulicn 12352 . . . 4 (2 · i) ∈ ℂ
14 2muline0 12353 . . . 4 (2 · i) ≠ 0
15 divcl 11789 . . . 4 ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
1613, 14, 15mp3an23 1455 . . 3 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
1712, 16syl 17 . 2 (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
181, 17fmpti 7051 1 sin:ℂ⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wne 2929  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  ici 11015   · cmul 11018  cmin 11351  -cneg 11352   / cdiv 11781  2c2 12187  expce 15970  sincsin 15972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978
This theorem is referenced by:  sincl  16037  pilem1  26389  resinf1o  26473  ex-fpar  30444  dvtan  37730  resuppsinopn  42481  readvcot  42482  sinmulcos  45987  resincncf  45997  dvsinexp  46033  dvsinax  46035  itgsinexplem1  46076  dirkercncflem2  46226  fourierdlem56  46284  fourierdlem73  46301  fourierdlem76  46304  sinnpoly  47015
  Copyright terms: Public domain W3C validator