MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinf Structured version   Visualization version   GIF version

Theorem sinf 16094
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinf sin:ℂ⟶ℂ

Proof of Theorem sinf
StepHypRef Expression
1 df-sin 16039 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2 ax-icn 11191 . . . . . 6 i ∈ ℂ
3 mulcl 11216 . . . . . 6 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
42, 3mpan 689 . . . . 5 (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ)
5 efcl 16052 . . . . 5 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
64, 5syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
7 negicn 11485 . . . . . 6 -i ∈ ℂ
8 mulcl 11216 . . . . . 6 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
97, 8mpan 689 . . . . 5 (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ)
10 efcl 16052 . . . . 5 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
119, 10syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
126, 11subcld 11595 . . 3 (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
13 2mulicn 12459 . . . 4 (2 · i) ∈ ℂ
14 2muline0 12460 . . . 4 (2 · i) ≠ 0
15 divcl 11902 . . . 4 ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
1613, 14, 15mp3an23 1450 . . 3 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
1712, 16syl 17 . 2 (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
181, 17fmpti 7116 1 sin:ℂ⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  wne 2936  wf 6538  cfv 6542  (class class class)co 7414  cc 11130  0cc0 11132  ici 11134   · cmul 11137  cmin 11468  -cneg 11469   / cdiv 11895  2c2 12291  expce 16031  sincsin 16033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-ico 13356  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-fac 14259  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-ef 16037  df-sin 16039
This theorem is referenced by:  sincl  16096  pilem1  26381  resinf1o  26463  ex-fpar  30265  dvtan  37137  sinmulcos  45247  resincncf  45257  dvsinexp  45293  dvsinax  45295  itgsinexplem1  45336  dirkercncflem2  45486  fourierdlem56  45544  fourierdlem73  45561  fourierdlem76  45564
  Copyright terms: Public domain W3C validator