MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinf Structured version   Visualization version   GIF version

Theorem sinf 15337
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinf sin:ℂ⟶ℂ

Proof of Theorem sinf
StepHypRef Expression
1 df-sin 15283 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
2 ax-icn 10394 . . . . . 6 i ∈ ℂ
3 mulcl 10419 . . . . . 6 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
42, 3mpan 677 . . . . 5 (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ)
5 efcl 15296 . . . . 5 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
64, 5syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
7 negicn 10687 . . . . . 6 -i ∈ ℂ
8 mulcl 10419 . . . . . 6 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
97, 8mpan 677 . . . . 5 (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ)
10 efcl 15296 . . . . 5 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
119, 10syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
126, 11subcld 10798 . . 3 (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
13 2mulicn 11670 . . . 4 (2 · i) ∈ ℂ
14 2muline0 11671 . . . 4 (2 · i) ≠ 0
15 divcl 11105 . . . 4 ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
1613, 14, 15mp3an23 1432 . . 3 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
1712, 16syl 17 . 2 (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ)
181, 17fmpti 6699 1 sin:ℂ⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2050  wne 2968  wf 6184  cfv 6188  (class class class)co 6976  cc 10333  0cc0 10335  ici 10337   · cmul 10340  cmin 10670  -cneg 10671   / cdiv 11098  2c2 11495  expce 15275  sincsin 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-ico 12560  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-fac 13449  df-hash 13506  df-shft 14287  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904  df-ef 15281  df-sin 15283
This theorem is referenced by:  sincl  15339  pilem1  24742  resinf1o  24821  dvtan  34380  sinmulcos  41574  resincncf  41586  dvsinexp  41623  dvsinax  41625  itgsinexplem1  41667  dirkercncflem2  41818  fourierdlem56  41876  fourierdlem73  41893  fourierdlem76  41896
  Copyright terms: Public domain W3C validator