![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinf | Structured version Visualization version GIF version |
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
sinf | ⊢ sin:ℂ⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sin 16039 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
2 | ax-icn 11191 | . . . . . 6 ⊢ i ∈ ℂ | |
3 | mulcl 11216 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ) | |
4 | 2, 3 | mpan 689 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ) |
5 | efcl 16052 | . . . . 5 ⊢ ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ) |
7 | negicn 11485 | . . . . . 6 ⊢ -i ∈ ℂ | |
8 | mulcl 11216 | . . . . . 6 ⊢ ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ) | |
9 | 7, 8 | mpan 689 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ) |
10 | efcl 16052 | . . . . 5 ⊢ ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ) |
12 | 6, 11 | subcld 11595 | . . 3 ⊢ (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ) |
13 | 2mulicn 12459 | . . . 4 ⊢ (2 · i) ∈ ℂ | |
14 | 2muline0 12460 | . . . 4 ⊢ (2 · i) ≠ 0 | |
15 | divcl 11902 | . . . 4 ⊢ ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ) | |
16 | 13, 14, 15 | mp3an23 1450 | . . 3 ⊢ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ) |
17 | 12, 16 | syl 17 | . 2 ⊢ (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) ∈ ℂ) |
18 | 1, 17 | fmpti 7116 | 1 ⊢ sin:ℂ⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ≠ wne 2936 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 0cc0 11132 ici 11134 · cmul 11137 − cmin 11468 -cneg 11469 / cdiv 11895 2c2 12291 expce 16031 sincsin 16033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-ico 13356 df-fz 13511 df-fzo 13654 df-fl 13783 df-seq 13993 df-exp 14053 df-fac 14259 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-sin 16039 |
This theorem is referenced by: sincl 16096 pilem1 26381 resinf1o 26463 ex-fpar 30265 dvtan 37137 sinmulcos 45247 resincncf 45257 dvsinexp 45293 dvsinax 45295 itgsinexplem1 45336 dirkercncflem2 45486 fourierdlem56 45544 fourierdlem73 45561 fourierdlem76 45564 |
Copyright terms: Public domain | W3C validator |