MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvsincos Structured version   Visualization version   GIF version

Theorem dvsincos 25906
Description: Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
dvsincos ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))

Proof of Theorem dvsincos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11225 . . . . . 6 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
3 ax-icn 11191 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
5 simpr 484 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
64, 5mulcld 11258 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
7 efcl 16052 . . . . . . . 8 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
86, 7syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
9 ine0 11673 . . . . . . . 8 i ≠ 0
109a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → i ≠ 0)
118, 4, 10divcld 12014 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) / i) ∈ ℂ)
12 negicn 11485 . . . . . . . . . 10 -i ∈ ℂ
13 mulcl 11216 . . . . . . . . . 10 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
1412, 5, 13sylancr 586 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
15 efcl 16052 . . . . . . . . 9 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
1614, 15syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(-i · 𝑥)) ∈ ℂ)
1716, 4, 10divcld 12014 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1817negcld 11582 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1911, 18addcld 11257 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) ∈ ℂ)
208, 16addcld 11257 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ)
218, 4mulcld 11258 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
22 efcl 16052 . . . . . . . . . 10 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
2322adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
24 1cnd 11233 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
252dvmptid 25882 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
263a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
272, 5, 24, 25, 26dvmptcmul 25889 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
283mulridi 11242 . . . . . . . . . . 11 (i · 1) = i
2928mpteq2i 5247 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
3027, 29eqtrdi 2784 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
31 eff 16051 . . . . . . . . . . . . 13 exp:ℂ⟶ℂ
3231a1i 11 . . . . . . . . . . . 12 (⊤ → exp:ℂ⟶ℂ)
3332feqmptd 6961 . . . . . . . . . . 11 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3433oveq2d 7430 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
35 dvef 25905 . . . . . . . . . . 11 (ℂ D exp) = exp
3635, 33eqtrid 2780 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3734, 36eqtr3d 2770 . . . . . . . . 9 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
38 fveq2 6891 . . . . . . . . 9 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
392, 2, 6, 4, 23, 23, 30, 37, 38, 38dvmptco 25897 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
409a1i 11 . . . . . . . 8 (⊤ → i ≠ 0)
412, 8, 21, 39, 26, 40dvmptdivc 25890 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)))
428, 4, 10divcan4d 12020 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) / i) = (exp‘(i · 𝑥)))
4342mpteq2dva 5242 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
4441, 43eqtrd 2768 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
45 mulcl 11216 . . . . . . . . . 10 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ -i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4616, 12, 45sylancl 585 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4746, 4, 10divcld 12014 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / i) ∈ ℂ)
4812a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ∈ ℂ)
4912a1i 11 . . . . . . . . . . . 12 (⊤ → -i ∈ ℂ)
502, 5, 24, 25, 49dvmptcmul 25889 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ (-i · 1)))
5112mulridi 11242 . . . . . . . . . . . 12 (-i · 1) = -i
5251mpteq2i 5247 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 1)) = (𝑥 ∈ ℂ ↦ -i)
5350, 52eqtrdi 2784 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ -i))
54 fveq2 6891 . . . . . . . . . 10 (𝑦 = (-i · 𝑥) → (exp‘𝑦) = (exp‘(-i · 𝑥)))
552, 2, 14, 48, 23, 23, 53, 37, 54, 54dvmptco 25897 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) · -i)))
562, 16, 46, 55, 26, 40dvmptdivc 25890 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(-i · 𝑥)) · -i) / i)))
572, 17, 47, 56dvmptneg 25891 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)))
5846, 4, 10divneg2d 12028 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (((exp‘(-i · 𝑥)) · -i) / -i))
593, 9negne0i 11559 . . . . . . . . . . 11 -i ≠ 0
6059a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ≠ 0)
6116, 48, 60divcan4d 12020 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / -i) = (exp‘(-i · 𝑥)))
6258, 61eqtrd 2768 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (exp‘(-i · 𝑥)))
6362mpteq2dva 5242 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
6457, 63eqtrd 2768 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
652, 11, 8, 44, 18, 16, 64dvmptadd 25885 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))))
66 2cnd 12314 . . . . 5 (⊤ → 2 ∈ ℂ)
67 2ne0 12340 . . . . . 6 2 ≠ 0
6867a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
692, 19, 20, 65, 66, 68dvmptdivc 25890 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
70 df-sin 16039 . . . . . 6 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
718, 16subcld 11595 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
72 2cnd 12314 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ∈ ℂ)
7367a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ≠ 0)
7471, 4, 72, 10, 73divdiv1d 12045 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)))
75 2cn 12311 . . . . . . . . . . 11 2 ∈ ℂ
763, 75mulcomi 11246 . . . . . . . . . 10 (i · 2) = (2 · i)
7776oveq2i 7425 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))
7874, 77eqtrdi 2784 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
798, 16, 4, 10divsubdird 12053 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8011, 17negsubd 11601 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8179, 80eqtr4d 2771 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))
8281oveq1d 7429 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8378, 82eqtr3d 2770 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8483mpteq2dva 5242 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8570, 84eqtrid 2780 . . . . 5 (⊤ → sin = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8685oveq2d 7430 . . . 4 (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))))
87 df-cos 16040 . . . . 5 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
8887a1i 11 . . . 4 (⊤ → cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
8969, 86, 883eqtr4d 2778 . . 3 (⊤ → (ℂ D sin) = cos)
9021, 46addcld 11257 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) ∈ ℂ)
912, 8, 21, 39, 16, 46, 55dvmptadd 25885 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i))))
922, 20, 90, 91, 66, 68dvmptdivc 25890 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
9388oveq2d 7430 . . . 4 (⊤ → (ℂ D cos) = (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))))
9471, 4, 10divcld 12014 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) ∈ ℂ)
9594, 72, 73divnegd 12027 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
96 sinval 16092 . . . . . . . . 9 (𝑥 ∈ ℂ → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9796adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9897, 78eqtr4d 2771 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
9998negeqd 11478 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
1003negnegi 11554 . . . . . . . . . 10 --i = i
101100oveq2i 7425 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i)
102 mulneg2 11675 . . . . . . . . . 10 ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ -i ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
10371, 12, 102sylancl 585 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
104101, 103eqtr3id 2782 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
105 mulcl 11216 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10616, 3, 105sylancl 585 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10721, 106negsubd 11601 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
108 mulneg2 11675 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
10916, 3, 108sylancl 585 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
110109oveq2d 7430 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)))
1118, 16, 4subdird 11695 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
112107, 110, 1113eqtr4d 2778 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i))
11371, 4, 10divrecd 12017 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)))
114 irec 14190 . . . . . . . . . . 11 (1 / i) = -i
115114oveq2i 7425 . . . . . . . . . 10 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i)
116113, 115eqtrdi 2784 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
117116negeqd 11478 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
118104, 112, 1173eqtr4d 2778 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i))
119118oveq1d 7429 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
12095, 99, 1193eqtr4d 2778 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2))
121120mpteq2dva 5242 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
12292, 93, 1213eqtr4d 2778 . . 3 (⊤ → (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
12389, 122jca 511 . 2 (⊤ → ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))))
124123mptru 1541 1 ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wtru 1535  wcel 2099  wne 2936  {cpr 4626  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133  ici 11134   + caddc 11135   · cmul 11137  cmin 11468  -cneg 11469   / cdiv 11895  2c2 12291  expce 16031  sincsin 16033  cosccos 16034   D cdv 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-ef 16037  df-sin 16039  df-cos 16040  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789
This theorem is referenced by:  dvsin  25907  dvcos  25908
  Copyright terms: Public domain W3C validator