MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvsincos Structured version   Visualization version   GIF version

Theorem dvsincos 24580
Description: Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
dvsincos ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))

Proof of Theorem dvsincos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 10632 . . . . . 6 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
3 ax-icn 10598 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
5 simpr 487 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
64, 5mulcld 10663 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
7 efcl 15438 . . . . . . . 8 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
86, 7syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
9 ine0 11077 . . . . . . . 8 i ≠ 0
109a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → i ≠ 0)
118, 4, 10divcld 11418 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) / i) ∈ ℂ)
12 negicn 10889 . . . . . . . . . 10 -i ∈ ℂ
13 mulcl 10623 . . . . . . . . . 10 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
1412, 5, 13sylancr 589 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
15 efcl 15438 . . . . . . . . 9 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
1614, 15syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(-i · 𝑥)) ∈ ℂ)
1716, 4, 10divcld 11418 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1817negcld 10986 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1911, 18addcld 10662 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) ∈ ℂ)
208, 16addcld 10662 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ)
218, 4mulcld 10663 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
22 efcl 15438 . . . . . . . . . 10 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
2322adantl 484 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
24 1cnd 10638 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
252dvmptid 24556 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
263a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
272, 5, 24, 25, 26dvmptcmul 24563 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
283mulid1i 10647 . . . . . . . . . . 11 (i · 1) = i
2928mpteq2i 5160 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
3027, 29syl6eq 2874 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
31 eff 15437 . . . . . . . . . . . . 13 exp:ℂ⟶ℂ
3231a1i 11 . . . . . . . . . . . 12 (⊤ → exp:ℂ⟶ℂ)
3332feqmptd 6735 . . . . . . . . . . 11 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3433oveq2d 7174 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
35 dvef 24579 . . . . . . . . . . 11 (ℂ D exp) = exp
3635, 33syl5eq 2870 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3734, 36eqtr3d 2860 . . . . . . . . 9 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
38 fveq2 6672 . . . . . . . . 9 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
392, 2, 6, 4, 23, 23, 30, 37, 38, 38dvmptco 24571 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
409a1i 11 . . . . . . . 8 (⊤ → i ≠ 0)
412, 8, 21, 39, 26, 40dvmptdivc 24564 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)))
428, 4, 10divcan4d 11424 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) / i) = (exp‘(i · 𝑥)))
4342mpteq2dva 5163 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
4441, 43eqtrd 2858 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
45 mulcl 10623 . . . . . . . . . 10 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ -i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4616, 12, 45sylancl 588 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4746, 4, 10divcld 11418 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / i) ∈ ℂ)
4812a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ∈ ℂ)
4912a1i 11 . . . . . . . . . . . 12 (⊤ → -i ∈ ℂ)
502, 5, 24, 25, 49dvmptcmul 24563 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ (-i · 1)))
5112mulid1i 10647 . . . . . . . . . . . 12 (-i · 1) = -i
5251mpteq2i 5160 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 1)) = (𝑥 ∈ ℂ ↦ -i)
5350, 52syl6eq 2874 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ -i))
54 fveq2 6672 . . . . . . . . . 10 (𝑦 = (-i · 𝑥) → (exp‘𝑦) = (exp‘(-i · 𝑥)))
552, 2, 14, 48, 23, 23, 53, 37, 54, 54dvmptco 24571 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) · -i)))
562, 16, 46, 55, 26, 40dvmptdivc 24564 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(-i · 𝑥)) · -i) / i)))
572, 17, 47, 56dvmptneg 24565 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)))
5846, 4, 10divneg2d 11432 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (((exp‘(-i · 𝑥)) · -i) / -i))
593, 9negne0i 10963 . . . . . . . . . . 11 -i ≠ 0
6059a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ≠ 0)
6116, 48, 60divcan4d 11424 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / -i) = (exp‘(-i · 𝑥)))
6258, 61eqtrd 2858 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (exp‘(-i · 𝑥)))
6362mpteq2dva 5163 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
6457, 63eqtrd 2858 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
652, 11, 8, 44, 18, 16, 64dvmptadd 24559 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))))
66 2cnd 11718 . . . . 5 (⊤ → 2 ∈ ℂ)
67 2ne0 11744 . . . . . 6 2 ≠ 0
6867a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
692, 19, 20, 65, 66, 68dvmptdivc 24564 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
70 df-sin 15425 . . . . . 6 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
718, 16subcld 10999 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
72 2cnd 11718 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ∈ ℂ)
7367a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ≠ 0)
7471, 4, 72, 10, 73divdiv1d 11449 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)))
75 2cn 11715 . . . . . . . . . . 11 2 ∈ ℂ
763, 75mulcomi 10651 . . . . . . . . . 10 (i · 2) = (2 · i)
7776oveq2i 7169 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))
7874, 77syl6eq 2874 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
798, 16, 4, 10divsubdird 11457 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8011, 17negsubd 11005 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8179, 80eqtr4d 2861 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))
8281oveq1d 7173 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8378, 82eqtr3d 2860 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8483mpteq2dva 5163 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8570, 84syl5eq 2870 . . . . 5 (⊤ → sin = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8685oveq2d 7174 . . . 4 (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))))
87 df-cos 15426 . . . . 5 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
8887a1i 11 . . . 4 (⊤ → cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
8969, 86, 883eqtr4d 2868 . . 3 (⊤ → (ℂ D sin) = cos)
9021, 46addcld 10662 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) ∈ ℂ)
912, 8, 21, 39, 16, 46, 55dvmptadd 24559 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i))))
922, 20, 90, 91, 66, 68dvmptdivc 24564 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
9388oveq2d 7174 . . . 4 (⊤ → (ℂ D cos) = (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))))
9471, 4, 10divcld 11418 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) ∈ ℂ)
9594, 72, 73divnegd 11431 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
96 sinval 15477 . . . . . . . . 9 (𝑥 ∈ ℂ → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9796adantl 484 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9897, 78eqtr4d 2861 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
9998negeqd 10882 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
1003negnegi 10958 . . . . . . . . . 10 --i = i
101100oveq2i 7169 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i)
102 mulneg2 11079 . . . . . . . . . 10 ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ -i ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
10371, 12, 102sylancl 588 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
104101, 103syl5eqr 2872 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
105 mulcl 10623 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10616, 3, 105sylancl 588 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10721, 106negsubd 11005 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
108 mulneg2 11079 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
10916, 3, 108sylancl 588 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
110109oveq2d 7174 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)))
1118, 16, 4subdird 11099 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
112107, 110, 1113eqtr4d 2868 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i))
11371, 4, 10divrecd 11421 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)))
114 irec 13567 . . . . . . . . . . 11 (1 / i) = -i
115114oveq2i 7169 . . . . . . . . . 10 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i)
116113, 115syl6eq 2874 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
117116negeqd 10882 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
118104, 112, 1173eqtr4d 2868 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i))
119118oveq1d 7173 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
12095, 99, 1193eqtr4d 2868 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2))
121120mpteq2dva 5163 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
12292, 93, 1213eqtr4d 2868 . . 3 (⊤ → (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
12389, 122jca 514 . 2 (⊤ → ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))))
124123mptru 1544 1 ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wtru 1538  wcel 2114  wne 3018  {cpr 4571  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  cmin 10872  -cneg 10873   / cdiv 11299  2c2 11695  expce 15417  sincsin 15419  cosccos 15420   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvsin  24581  dvcos  24582
  Copyright terms: Public domain W3C validator