MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvsincos Structured version   Visualization version   GIF version

Theorem dvsincos 24507
Description: Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
dvsincos ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))

Proof of Theorem dvsincos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 10619 . . . . . 6 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
3 ax-icn 10585 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
5 simpr 485 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
64, 5mulcld 10650 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
7 efcl 15426 . . . . . . . 8 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
86, 7syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
9 ine0 11064 . . . . . . . 8 i ≠ 0
109a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → i ≠ 0)
118, 4, 10divcld 11405 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) / i) ∈ ℂ)
12 negicn 10876 . . . . . . . . . 10 -i ∈ ℂ
13 mulcl 10610 . . . . . . . . . 10 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
1412, 5, 13sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
15 efcl 15426 . . . . . . . . 9 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
1614, 15syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(-i · 𝑥)) ∈ ℂ)
1716, 4, 10divcld 11405 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1817negcld 10973 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1911, 18addcld 10649 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) ∈ ℂ)
208, 16addcld 10649 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ)
218, 4mulcld 10650 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
22 efcl 15426 . . . . . . . . . 10 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
2322adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
24 1cnd 10625 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
252dvmptid 24483 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
263a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
272, 5, 24, 25, 26dvmptcmul 24490 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
283mulid1i 10634 . . . . . . . . . . 11 (i · 1) = i
2928mpteq2i 5150 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
3027, 29syl6eq 2872 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
31 eff 15425 . . . . . . . . . . . . 13 exp:ℂ⟶ℂ
3231a1i 11 . . . . . . . . . . . 12 (⊤ → exp:ℂ⟶ℂ)
3332feqmptd 6727 . . . . . . . . . . 11 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3433oveq2d 7161 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
35 dvef 24506 . . . . . . . . . . 11 (ℂ D exp) = exp
3635, 33syl5eq 2868 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3734, 36eqtr3d 2858 . . . . . . . . 9 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
38 fveq2 6664 . . . . . . . . 9 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
392, 2, 6, 4, 23, 23, 30, 37, 38, 38dvmptco 24498 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
409a1i 11 . . . . . . . 8 (⊤ → i ≠ 0)
412, 8, 21, 39, 26, 40dvmptdivc 24491 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)))
428, 4, 10divcan4d 11411 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) / i) = (exp‘(i · 𝑥)))
4342mpteq2dva 5153 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
4441, 43eqtrd 2856 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
45 mulcl 10610 . . . . . . . . . 10 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ -i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4616, 12, 45sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4746, 4, 10divcld 11405 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / i) ∈ ℂ)
4812a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ∈ ℂ)
4912a1i 11 . . . . . . . . . . . 12 (⊤ → -i ∈ ℂ)
502, 5, 24, 25, 49dvmptcmul 24490 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ (-i · 1)))
5112mulid1i 10634 . . . . . . . . . . . 12 (-i · 1) = -i
5251mpteq2i 5150 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 1)) = (𝑥 ∈ ℂ ↦ -i)
5350, 52syl6eq 2872 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ -i))
54 fveq2 6664 . . . . . . . . . 10 (𝑦 = (-i · 𝑥) → (exp‘𝑦) = (exp‘(-i · 𝑥)))
552, 2, 14, 48, 23, 23, 53, 37, 54, 54dvmptco 24498 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) · -i)))
562, 16, 46, 55, 26, 40dvmptdivc 24491 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(-i · 𝑥)) · -i) / i)))
572, 17, 47, 56dvmptneg 24492 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)))
5846, 4, 10divneg2d 11419 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (((exp‘(-i · 𝑥)) · -i) / -i))
593, 9negne0i 10950 . . . . . . . . . . 11 -i ≠ 0
6059a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ≠ 0)
6116, 48, 60divcan4d 11411 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / -i) = (exp‘(-i · 𝑥)))
6258, 61eqtrd 2856 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (exp‘(-i · 𝑥)))
6362mpteq2dva 5153 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
6457, 63eqtrd 2856 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
652, 11, 8, 44, 18, 16, 64dvmptadd 24486 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))))
66 2cnd 11704 . . . . 5 (⊤ → 2 ∈ ℂ)
67 2ne0 11730 . . . . . 6 2 ≠ 0
6867a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
692, 19, 20, 65, 66, 68dvmptdivc 24491 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
70 df-sin 15413 . . . . . 6 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
718, 16subcld 10986 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
72 2cnd 11704 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ∈ ℂ)
7367a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ≠ 0)
7471, 4, 72, 10, 73divdiv1d 11436 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)))
75 2cn 11701 . . . . . . . . . . 11 2 ∈ ℂ
763, 75mulcomi 10638 . . . . . . . . . 10 (i · 2) = (2 · i)
7776oveq2i 7156 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))
7874, 77syl6eq 2872 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
798, 16, 4, 10divsubdird 11444 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8011, 17negsubd 10992 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8179, 80eqtr4d 2859 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))
8281oveq1d 7160 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8378, 82eqtr3d 2858 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8483mpteq2dva 5153 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8570, 84syl5eq 2868 . . . . 5 (⊤ → sin = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8685oveq2d 7161 . . . 4 (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))))
87 df-cos 15414 . . . . 5 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
8887a1i 11 . . . 4 (⊤ → cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
8969, 86, 883eqtr4d 2866 . . 3 (⊤ → (ℂ D sin) = cos)
9021, 46addcld 10649 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) ∈ ℂ)
912, 8, 21, 39, 16, 46, 55dvmptadd 24486 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i))))
922, 20, 90, 91, 66, 68dvmptdivc 24491 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
9388oveq2d 7161 . . . 4 (⊤ → (ℂ D cos) = (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))))
9471, 4, 10divcld 11405 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) ∈ ℂ)
9594, 72, 73divnegd 11418 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
96 sinval 15465 . . . . . . . . 9 (𝑥 ∈ ℂ → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9796adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9897, 78eqtr4d 2859 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
9998negeqd 10869 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
1003negnegi 10945 . . . . . . . . . 10 --i = i
101100oveq2i 7156 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i)
102 mulneg2 11066 . . . . . . . . . 10 ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ -i ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
10371, 12, 102sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
104101, 103syl5eqr 2870 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
105 mulcl 10610 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10616, 3, 105sylancl 586 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10721, 106negsubd 10992 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
108 mulneg2 11066 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
10916, 3, 108sylancl 586 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
110109oveq2d 7161 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)))
1118, 16, 4subdird 11086 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
112107, 110, 1113eqtr4d 2866 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i))
11371, 4, 10divrecd 11408 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)))
114 irec 13554 . . . . . . . . . . 11 (1 / i) = -i
115114oveq2i 7156 . . . . . . . . . 10 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i)
116113, 115syl6eq 2872 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
117116negeqd 10869 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
118104, 112, 1173eqtr4d 2866 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i))
119118oveq1d 7160 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
12095, 99, 1193eqtr4d 2866 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2))
121120mpteq2dva 5153 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
12292, 93, 1213eqtr4d 2866 . . 3 (⊤ → (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
12389, 122jca 512 . 2 (⊤ → ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))))
124123mptru 1535 1 ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1528  wtru 1529  wcel 2105  wne 3016  {cpr 4561  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7145  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11681  expce 15405  sincsin 15407  cosccos 15408   D cdv 24390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-fbas 20472  df-fg 20473  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cld 21557  df-ntr 21558  df-cls 21559  df-nei 21636  df-lp 21674  df-perf 21675  df-cn 21765  df-cnp 21766  df-haus 21853  df-tx 22100  df-hmeo 22293  df-fil 22384  df-fm 22476  df-flim 22477  df-flf 22478  df-xms 22859  df-ms 22860  df-tms 22861  df-cncf 23415  df-limc 24393  df-dv 24394
This theorem is referenced by:  dvsin  24508  dvcos  24509
  Copyright terms: Public domain W3C validator