MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvsincos Structured version   Visualization version   GIF version

Theorem dvsincos 25885
Description: Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
dvsincos ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))

Proof of Theorem dvsincos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11161 . . . . . 6 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
3 ax-icn 11127 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
5 simpr 484 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
64, 5mulcld 11194 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
7 efcl 16048 . . . . . . . 8 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
86, 7syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
9 ine0 11613 . . . . . . . 8 i ≠ 0
109a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → i ≠ 0)
118, 4, 10divcld 11958 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) / i) ∈ ℂ)
12 negicn 11422 . . . . . . . . . 10 -i ∈ ℂ
13 mulcl 11152 . . . . . . . . . 10 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
1412, 5, 13sylancr 587 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
15 efcl 16048 . . . . . . . . 9 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
1614, 15syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(-i · 𝑥)) ∈ ℂ)
1716, 4, 10divcld 11958 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1817negcld 11520 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((exp‘(-i · 𝑥)) / i) ∈ ℂ)
1911, 18addcld 11193 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) ∈ ℂ)
208, 16addcld 11193 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ)
218, 4mulcld 11194 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
22 efcl 16048 . . . . . . . . . 10 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
2322adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
24 1cnd 11169 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
252dvmptid 25861 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
263a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
272, 5, 24, 25, 26dvmptcmul 25868 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
283mulridi 11178 . . . . . . . . . . 11 (i · 1) = i
2928mpteq2i 5203 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
3027, 29eqtrdi 2780 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
31 eff 16047 . . . . . . . . . . . . 13 exp:ℂ⟶ℂ
3231a1i 11 . . . . . . . . . . . 12 (⊤ → exp:ℂ⟶ℂ)
3332feqmptd 6929 . . . . . . . . . . 11 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3433oveq2d 7403 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
35 dvef 25884 . . . . . . . . . . 11 (ℂ D exp) = exp
3635, 33eqtrid 2776 . . . . . . . . . 10 (⊤ → (ℂ D exp) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3734, 36eqtr3d 2766 . . . . . . . . 9 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
38 fveq2 6858 . . . . . . . . 9 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
392, 2, 6, 4, 23, 23, 30, 37, 38, 38dvmptco 25876 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
409a1i 11 . . . . . . . 8 (⊤ → i ≠ 0)
412, 8, 21, 39, 26, 40dvmptdivc 25869 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)))
428, 4, 10divcan4d 11964 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) / i) = (exp‘(i · 𝑥)))
4342mpteq2dva 5200 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
4441, 43eqtrd 2764 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))))
45 mulcl 11152 . . . . . . . . . 10 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ -i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4616, 12, 45sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) ∈ ℂ)
4746, 4, 10divcld 11958 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / i) ∈ ℂ)
4812a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ∈ ℂ)
4912a1i 11 . . . . . . . . . . . 12 (⊤ → -i ∈ ℂ)
502, 5, 24, 25, 49dvmptcmul 25868 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ (-i · 1)))
5112mulridi 11178 . . . . . . . . . . . 12 (-i · 1) = -i
5251mpteq2i 5203 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 1)) = (𝑥 ∈ ℂ ↦ -i)
5350, 52eqtrdi 2780 . . . . . . . . . 10 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (-i · 𝑥))) = (𝑥 ∈ ℂ ↦ -i))
54 fveq2 6858 . . . . . . . . . 10 (𝑦 = (-i · 𝑥) → (exp‘𝑦) = (exp‘(-i · 𝑥)))
552, 2, 14, 48, 23, 23, 53, 37, 54, 54dvmptco 25876 . . . . . . . . 9 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) · -i)))
562, 16, 46, 55, 26, 40dvmptdivc 25869 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (((exp‘(-i · 𝑥)) · -i) / i)))
572, 17, 47, 56dvmptneg 25870 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)))
5846, 4, 10divneg2d 11972 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (((exp‘(-i · 𝑥)) · -i) / -i))
593, 9negne0i 11497 . . . . . . . . . . 11 -i ≠ 0
6059a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → -i ≠ 0)
6116, 48, 60divcan4d 11964 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(-i · 𝑥)) · -i) / -i) = (exp‘(-i · 𝑥)))
6258, 61eqtrd 2764 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(-i · 𝑥)) · -i) / i) = (exp‘(-i · 𝑥)))
6362mpteq2dva 5200 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ -(((exp‘(-i · 𝑥)) · -i) / i)) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
6457, 63eqtrd 2764 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ -((exp‘(-i · 𝑥)) / i))) = (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))))
652, 11, 8, 44, 18, 16, 64dvmptadd 25864 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))))
66 2cnd 12264 . . . . 5 (⊤ → 2 ∈ ℂ)
67 2ne0 12290 . . . . . 6 2 ≠ 0
6867a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
692, 19, 20, 65, 66, 68dvmptdivc 25869 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
70 df-sin 16035 . . . . . 6 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
718, 16subcld 11533 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ)
72 2cnd 12264 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ∈ ℂ)
7367a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → 2 ≠ 0)
7471, 4, 72, 10, 73divdiv1d 11989 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)))
75 2cn 12261 . . . . . . . . . . 11 2 ∈ ℂ
763, 75mulcomi 11182 . . . . . . . . . 10 (i · 2) = (2 · i)
7776oveq2i 7398 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (i · 2)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))
7874, 77eqtrdi 2780 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
798, 16, 4, 10divsubdird 11997 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8011, 17negsubd 11539 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) = (((exp‘(i · 𝑥)) / i) − ((exp‘(-i · 𝑥)) / i)))
8179, 80eqtr4d 2767 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)))
8281oveq1d 7402 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8378, 82eqtr3d 2766 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))
8483mpteq2dva 5200 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8570, 84eqtrid 2776 . . . . 5 (⊤ → sin = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2)))
8685oveq2d 7403 . . . 4 (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) / i) + -((exp‘(-i · 𝑥)) / i)) / 2))))
87 df-cos 16036 . . . . 5 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
8887a1i 11 . . . 4 (⊤ → cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
8969, 86, 883eqtr4d 2774 . . 3 (⊤ → (ℂ D sin) = cos)
9021, 46addcld 11193 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) ∈ ℂ)
912, 8, 21, 39, 16, 46, 55dvmptadd 25864 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i))))
922, 20, 90, 91, 66, 68dvmptdivc 25869 . . . 4 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
9388oveq2d 7403 . . . 4 (⊤ → (ℂ D cos) = (ℂ D (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))))
9471, 4, 10divcld 11958 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) ∈ ℂ)
9594, 72, 73divnegd 11971 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
96 sinval 16090 . . . . . . . . 9 (𝑥 ∈ ℂ → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9796adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
9897, 78eqtr4d 2767 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) = ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
9998negeqd 11415 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = -((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
1003negnegi 11492 . . . . . . . . . 10 --i = i
101100oveq2i 7398 . . . . . . . . 9 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i)
102 mulneg2 11615 . . . . . . . . . 10 ((((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ∧ -i ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
10371, 12, 102sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · --i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
104101, 103eqtr3id 2778 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
105 mulcl 11152 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10616, 3, 105sylancl 586 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · i) ∈ ℂ)
10721, 106negsubd 11539 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
108 mulneg2 11615 . . . . . . . . . . 11 (((exp‘(-i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
10916, 3, 108sylancl 586 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(-i · 𝑥)) · -i) = -((exp‘(-i · 𝑥)) · i))
110109oveq2d 7403 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) · i) + -((exp‘(-i · 𝑥)) · i)))
1118, 16, 4subdird 11635 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i) = (((exp‘(i · 𝑥)) · i) − ((exp‘(-i · 𝑥)) · i)))
112107, 110, 1113eqtr4d 2774 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · i))
11371, 4, 10divrecd 11961 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)))
114 irec 14166 . . . . . . . . . . 11 (1 / i) = -i
115114oveq2i 7398 . . . . . . . . . 10 (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · (1 / i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i)
116113, 115eqtrdi 2780 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
117116negeqd 11415 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) · -i))
118104, 112, 1173eqtr4d 2774 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) = -(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i))
119118oveq1d 7402 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2) = (-(((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / i) / 2))
12095, 99, 1193eqtr4d 2774 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) = ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2))
121120mpteq2dva 5200 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = (𝑥 ∈ ℂ ↦ ((((exp‘(i · 𝑥)) · i) + ((exp‘(-i · 𝑥)) · -i)) / 2)))
12292, 93, 1213eqtr4d 2774 . . 3 (⊤ → (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
12389, 122jca 511 . 2 (⊤ → ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))))
124123mptru 1547 1 ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  {cpr 4591  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  expce 16027  sincsin 16029  cosccos 16030   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvsin  25886  dvcos  25887
  Copyright terms: Public domain W3C validator