![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sincn | Structured version Visualization version GIF version |
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
sincn | ⊢ sin ∈ (ℂ–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sin 16019 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
2 | eqid 2730 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | 2 | subcn 24604 | . . . . . . . . 9 ⊢ − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
5 | efcn 26189 | . . . . . . . . . 10 ⊢ exp ∈ (ℂ–cn→ℂ) | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → exp ∈ (ℂ–cn→ℂ)) |
7 | ax-icn 11173 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
8 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥)) | |
9 | 8 | mulc1cncf 24647 | . . . . . . . . . 10 ⊢ (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
10 | 7, 9 | mp1i 13 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
11 | 6, 10 | cncfmpt1f 24656 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
12 | negicn 11467 | . . . . . . . . . 10 ⊢ -i ∈ ℂ | |
13 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥)) | |
14 | 13 | mulc1cncf 24647 | . . . . . . . . . 10 ⊢ (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
15 | 12, 14 | mp1i 13 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
16 | 6, 15 | cncfmpt1f 24656 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
17 | 2, 4, 11, 16 | cncfmpt2f 24657 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ)) |
18 | cncff 24635 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
20 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) | |
21 | 20 | fmpt 7112 | . . . . . 6 ⊢ (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
22 | 19, 21 | sylibr 233 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) ∈ ℂ) |
23 | eqidd 2731 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) | |
24 | eqidd 2731 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i)))) | |
25 | oveq1 7420 | . . . . 5 ⊢ (𝑦 = ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) → (𝑦 / (2 · i)) = (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
26 | 22, 23, 24, 25 | fmptcof 7131 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))) |
27 | 2mulicn 12441 | . . . . . . 7 ⊢ (2 · i) ∈ ℂ | |
28 | 2muline0 12442 | . . . . . . 7 ⊢ (2 · i) ≠ 0 | |
29 | eqid 2730 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) = (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) | |
30 | 29 | divccncf 24648 | . . . . . . 7 ⊢ (((2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)) |
31 | 27, 28, 30 | mp2an 688 | . . . . . 6 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∈ (ℂ–cn→ℂ)) |
33 | 17, 32 | cncfco 24649 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / (2 · i))) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ)) |
34 | 26, 33 | eqeltrrd 2832 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ)) |
35 | 34 | mptru 1546 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) ∈ (ℂ–cn→ℂ) |
36 | 1, 35 | eqeltri 2827 | 1 ⊢ sin ∈ (ℂ–cn→ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ↦ cmpt 5232 ∘ ccom 5681 ⟶wf 6540 ‘cfv 6544 (class class class)co 7413 ℂcc 11112 0cc0 11114 ici 11116 · cmul 11119 − cmin 11450 -cneg 11451 / cdiv 11877 2c2 12273 expce 16011 sincsin 16013 TopOpenctopn 17373 ℂfldccnfld 21146 Cn ccn 22950 ×t ctx 23286 –cn→ccncf 24618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14034 df-fac 14240 df-bc 14269 df-hash 14297 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-sin 16019 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-hom 17227 df-cco 17228 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-pt 17396 df-prds 17399 df-xrs 17454 df-qtop 17459 df-imas 17460 df-xps 17462 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18708 df-mulg 18989 df-cntz 19224 df-cmn 19693 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-fbas 21143 df-fg 21144 df-cnfld 21147 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-lp 22862 df-perf 22863 df-cn 22953 df-cnp 22954 df-haus 23041 df-tx 23288 df-hmeo 23481 df-fil 23572 df-fm 23664 df-flim 23665 df-flf 23666 df-xms 24048 df-ms 24049 df-tms 24050 df-cncf 24620 df-limc 25617 df-dv 25618 |
This theorem is referenced by: pilem3 26199 resincncf 44891 itgsin0pilem1 44966 ibliccsinexp 44967 itgsinexplem1 44970 itgsinexp 44971 itgcoscmulx 44985 itgsincmulx 44990 dirkeritg 45118 dirkercncflem2 45120 dirkercncflem4 45122 fourierdlem21 45144 fourierdlem22 45145 fourierdlem39 45162 fourierdlem62 45184 fourierdlem68 45190 fourierdlem73 45195 fourierdlem76 45198 fourierdlem78 45200 fourierdlem83 45205 sqwvfourb 45245 |
Copyright terms: Public domain | W3C validator |