![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinval | Structured version Visualization version GIF version |
Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
sinval | ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6924 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
3 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
4 | 3 | fveq2d 6924 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
5 | 2, 4 | oveq12d 7466 | . . 3 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) |
6 | 5 | oveq1d 7463 | . 2 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
7 | df-sin 16117 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
8 | ovex 7481 | . 2 ⊢ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) ∈ V | |
9 | 6, 7, 8 | fvmpt 7029 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ici 11186 · cmul 11189 − cmin 11520 -cneg 11521 / cdiv 11947 2c2 12348 expce 16109 sincsin 16111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-sin 16117 |
This theorem is referenced by: tanval2 16181 resinval 16183 sinneg 16194 efival 16200 sinhval 16202 sinadd 16212 dvsincos 26039 sinper 26541 sineq0 26584 efeq1 26588 sinasin 26950 sineq0ALT 44908 |
Copyright terms: Public domain | W3C validator |