| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sinval | Structured version Visualization version GIF version | ||
| Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| sinval | ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7411 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 2 | 1 | fveq2d 6879 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
| 3 | oveq2 7411 | . . . . 5 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
| 4 | 3 | fveq2d 6879 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
| 5 | 2, 4 | oveq12d 7421 | . . 3 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) |
| 6 | 5 | oveq1d 7418 | . 2 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
| 7 | df-sin 16083 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
| 8 | ovex 7436 | . 2 ⊢ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6985 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ici 11129 · cmul 11132 − cmin 11464 -cneg 11465 / cdiv 11892 2c2 12293 expce 16075 sincsin 16077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-sin 16083 |
| This theorem is referenced by: tanval2 16149 resinval 16151 sinneg 16162 efival 16168 sinhval 16170 sinadd 16180 dvsincos 25935 sinper 26440 sineq0 26483 efeq1 26487 sinasin 26849 sineq0ALT 44909 |
| Copyright terms: Public domain | W3C validator |