MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinval Structured version   Visualization version   GIF version

Theorem sinval 16072
Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
sinval (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))

Proof of Theorem sinval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6895 . . . 4 (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴)))
3 oveq2 7420 . . . . 5 (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴))
43fveq2d 6895 . . . 4 (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴)))
52, 4oveq12d 7430 . . 3 (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))
65oveq1d 7427 . 2 (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
7 df-sin 16020 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
8 ovex 7445 . 2 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) ∈ V
96, 7, 8fvmpt 6998 1 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  cc 11114  ici 11118   · cmul 11121  cmin 11451  -cneg 11452   / cdiv 11878  2c2 12274  expce 16012  sincsin 16014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-sin 16020
This theorem is referenced by:  tanval2  16083  resinval  16085  sinneg  16096  efival  16102  sinhval  16104  sinadd  16114  dvsincos  25833  sinper  26331  sineq0  26373  efeq1  26377  sinasin  26735  sineq0ALT  44163
  Copyright terms: Public domain W3C validator