MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinval Structured version   Visualization version   GIF version

Theorem sinval 16170
Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
sinval (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))

Proof of Theorem sinval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6924 . . . 4 (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴)))
3 oveq2 7456 . . . . 5 (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴))
43fveq2d 6924 . . . 4 (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴)))
52, 4oveq12d 7466 . . 3 (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))
65oveq1d 7463 . 2 (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
7 df-sin 16117 . 2 sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
8 ovex 7481 . 2 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) ∈ V
96, 7, 8fvmpt 7029 1 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  ici 11186   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  expce 16109  sincsin 16111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-sin 16117
This theorem is referenced by:  tanval2  16181  resinval  16183  sinneg  16194  efival  16200  sinhval  16202  sinadd  16212  dvsincos  26039  sinper  26541  sineq0  26584  efeq1  26588  sinasin  26950  sineq0ALT  44908
  Copyright terms: Public domain W3C validator