![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinval | Structured version Visualization version GIF version |
Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
sinval | ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7417 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6896 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
3 | oveq2 7417 | . . . . 5 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
4 | 3 | fveq2d 6896 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
5 | 2, 4 | oveq12d 7427 | . . 3 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) |
6 | 5 | oveq1d 7424 | . 2 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
7 | df-sin 16013 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
8 | ovex 7442 | . 2 ⊢ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6999 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 ℂcc 11108 ici 11112 · cmul 11115 − cmin 11444 -cneg 11445 / cdiv 11871 2c2 12267 expce 16005 sincsin 16007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-sin 16013 |
This theorem is referenced by: tanval2 16076 resinval 16078 sinneg 16089 efival 16095 sinhval 16097 sinadd 16107 dvsincos 25498 sinper 25991 sineq0 26033 efeq1 26037 sinasin 26394 sineq0ALT 43698 |
Copyright terms: Public domain | W3C validator |