| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sinval | Structured version Visualization version GIF version | ||
| Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| sinval | ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 2 | 1 | fveq2d 6865 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
| 3 | oveq2 7398 | . . . . 5 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
| 4 | 3 | fveq2d 6865 | . . . 4 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
| 5 | 2, 4 | oveq12d 7408 | . . 3 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) |
| 6 | 5 | oveq1d 7405 | . 2 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
| 7 | df-sin 16042 | . 2 ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | |
| 8 | ovex 7423 | . 2 ⊢ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6971 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ici 11077 · cmul 11080 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 expce 16034 sincsin 16036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-sin 16042 |
| This theorem is referenced by: tanval2 16108 resinval 16110 sinneg 16121 efival 16127 sinhval 16129 sinadd 16139 dvsincos 25892 sinper 26397 sineq0 26440 efeq1 26444 sinasin 26806 sineq0ALT 44933 |
| Copyright terms: Public domain | W3C validator |