MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmgm Structured version   Visualization version   GIF version

Theorem issubmgm 18627
Description: Expand definition of a submagma. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
issubmgm.b 𝐵 = (Base‘𝑀)
issubmgm.p + = (+g𝑀)
Assertion
Ref Expression
issubmgm (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)

Proof of Theorem issubmgm
Dummy variables 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6890 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
21pweqd 4618 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
3 fveq2 6890 . . . . . . . 8 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
43oveqd 7428 . . . . . . 7 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥(+g𝑀)𝑦))
54eleq1d 2816 . . . . . 6 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑡))
652ralbidv 3216 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡))
72, 6rabeqbidv 3447 . . . 4 (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡})
8 df-submgm 18618 . . . 4 SubMgm = (𝑚 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡})
9 fvex 6903 . . . . . 6 (Base‘𝑀) ∈ V
109pwex 5377 . . . . 5 𝒫 (Base‘𝑀) ∈ V
1110rabex 5331 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ∈ V
127, 8, 11fvmpt 6997 . . 3 (𝑀 ∈ Mgm → (SubMgm‘𝑀) = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡})
1312eleq2d 2817 . 2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡}))
149elpw2 5344 . . . 4 (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))
1514anbi1i 622 . . 3 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
16 eleq2 2820 . . . . . 6 (𝑡 = 𝑆 → ((𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1716raleqbi1dv 3331 . . . . 5 (𝑡 = 𝑆 → (∀𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1817raleqbi1dv 3331 . . . 4 (𝑡 = 𝑆 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1918elrab 3682 . . 3 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
20 issubmgm.b . . . . 5 𝐵 = (Base‘𝑀)
2120sseq2i 4010 . . . 4 (𝑆𝐵𝑆 ⊆ (Base‘𝑀))
22 issubmgm.p . . . . . . 7 + = (+g𝑀)
2322oveqi 7424 . . . . . 6 (𝑥 + 𝑦) = (𝑥(+g𝑀)𝑦)
2423eleq1i 2822 . . . . 5 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆)
25242ralbii 3126 . . . 4 (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
2621, 25anbi12i 625 . . 3 ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2715, 19, 263bitr4i 302 . 2 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
2813, 27bitrdi 286 1 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  {crab 3430  wss 3947  𝒫 cpw 4601  cfv 6542  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  Mgmcmgm 18563  SubMgmcsubmgm 18616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-submgm 18618
This theorem is referenced by:  issubmgm2  18628  rabsubmgmd  18629  submgmcl  18632  mgmhmima  18640  mgmhmeql  18641  submgmacs  18642
  Copyright terms: Public domain W3C validator