Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issubmgm Structured version   Visualization version   GIF version

Theorem issubmgm 44049
Description: Expand definition of a submagma. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
issubmgm.b 𝐵 = (Base‘𝑀)
issubmgm.p + = (+g𝑀)
Assertion
Ref Expression
issubmgm (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)

Proof of Theorem issubmgm
Dummy variables 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6665 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
21pweqd 4544 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
3 fveq2 6665 . . . . . . . 8 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
43oveqd 7167 . . . . . . 7 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥(+g𝑀)𝑦))
54eleq1d 2897 . . . . . 6 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑡))
652ralbidv 3199 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡))
72, 6rabeqbidv 3486 . . . 4 (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡})
8 df-submgm 44040 . . . 4 SubMgm = (𝑚 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡})
9 fvex 6678 . . . . . 6 (Base‘𝑀) ∈ V
109pwex 5274 . . . . 5 𝒫 (Base‘𝑀) ∈ V
1110rabex 5228 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ∈ V
127, 8, 11fvmpt 6763 . . 3 (𝑀 ∈ Mgm → (SubMgm‘𝑀) = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡})
1312eleq2d 2898 . 2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡}))
149elpw2 5241 . . . 4 (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))
1514anbi1i 625 . . 3 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
16 eleq2 2901 . . . . . 6 (𝑡 = 𝑆 → ((𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1716raleqbi1dv 3404 . . . . 5 (𝑡 = 𝑆 → (∀𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1817raleqbi1dv 3404 . . . 4 (𝑡 = 𝑆 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1918elrab 3680 . . 3 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
20 issubmgm.b . . . . 5 𝐵 = (Base‘𝑀)
2120sseq2i 3996 . . . 4 (𝑆𝐵𝑆 ⊆ (Base‘𝑀))
22 issubmgm.p . . . . . . 7 + = (+g𝑀)
2322oveqi 7163 . . . . . 6 (𝑥 + 𝑦) = (𝑥(+g𝑀)𝑦)
2423eleq1i 2903 . . . . 5 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆)
25242ralbii 3166 . . . 4 (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
2621, 25anbi12i 628 . . 3 ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2715, 19, 263bitr4i 305 . 2 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
2813, 27syl6bb 289 1 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  wss 3936  𝒫 cpw 4539  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Mgmcmgm 17844  SubMgmcsubmgm 44038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-submgm 44040
This theorem is referenced by:  issubmgm2  44050  rabsubmgmd  44051  submgmcl  44054  mgmhmima  44062  mgmhmeql  44063  submgmacs  44064
  Copyright terms: Public domain W3C validator