MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmgm Structured version   Visualization version   GIF version

Theorem issubmgm 18680
Description: Expand definition of a submagma. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
issubmgm.b 𝐵 = (Base‘𝑀)
issubmgm.p + = (+g𝑀)
Assertion
Ref Expression
issubmgm (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)

Proof of Theorem issubmgm
Dummy variables 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
21pweqd 4592 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
3 fveq2 6876 . . . . . . . 8 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
43oveqd 7422 . . . . . . 7 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥(+g𝑀)𝑦))
54eleq1d 2819 . . . . . 6 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑡))
652ralbidv 3205 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡))
72, 6rabeqbidv 3434 . . . 4 (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡})
8 df-submgm 18671 . . . 4 SubMgm = (𝑚 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡})
9 fvex 6889 . . . . . 6 (Base‘𝑀) ∈ V
109pwex 5350 . . . . 5 𝒫 (Base‘𝑀) ∈ V
1110rabex 5309 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ∈ V
127, 8, 11fvmpt 6986 . . 3 (𝑀 ∈ Mgm → (SubMgm‘𝑀) = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡})
1312eleq2d 2820 . 2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡}))
149elpw2 5304 . . . 4 (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))
1514anbi1i 624 . . 3 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
16 eleq2 2823 . . . . . 6 (𝑡 = 𝑆 → ((𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1716raleqbi1dv 3317 . . . . 5 (𝑡 = 𝑆 → (∀𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1817raleqbi1dv 3317 . . . 4 (𝑡 = 𝑆 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1918elrab 3671 . . 3 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
20 issubmgm.b . . . . 5 𝐵 = (Base‘𝑀)
2120sseq2i 3988 . . . 4 (𝑆𝐵𝑆 ⊆ (Base‘𝑀))
22 issubmgm.p . . . . . . 7 + = (+g𝑀)
2322oveqi 7418 . . . . . 6 (𝑥 + 𝑦) = (𝑥(+g𝑀)𝑦)
2423eleq1i 2825 . . . . 5 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆)
25242ralbii 3115 . . . 4 (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
2621, 25anbi12i 628 . . 3 ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2715, 19, 263bitr4i 303 . 2 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡} ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
2813, 27bitrdi 287 1 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926  𝒫 cpw 4575  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Mgmcmgm 18616  SubMgmcsubmgm 18669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-submgm 18671
This theorem is referenced by:  issubmgm2  18681  rabsubmgmd  18682  submgmcl  18685  mgmhmima  18693  mgmhmeql  18694  submgmacs  18695
  Copyright terms: Public domain W3C validator