Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > submgmrcl | Structured version Visualization version GIF version |
Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.) |
Ref | Expression |
---|---|
submgmrcl | ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-submgm 45222 | . . 3 ⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) | |
2 | 1 | dmmptss 6133 | . 2 ⊢ dom SubMgm ⊆ Mgm |
3 | elfvdm 6788 | . 2 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ dom SubMgm) | |
4 | 2, 3 | sselid 3915 | 1 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 {crab 3067 𝒫 cpw 4530 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mgmcmgm 18239 SubMgmcsubmgm 45220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-submgm 45222 |
This theorem is referenced by: submgmss 45234 submgmcl 45236 submgmmgm 45237 subsubmgm 45239 resmgmhm2 45241 |
Copyright terms: Public domain | W3C validator |