MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submgmrcl Structured version   Visualization version   GIF version

Theorem submgmrcl 18673
Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.)
Assertion
Ref Expression
submgmrcl (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)

Proof of Theorem submgmrcl
Dummy variables 𝑡 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submgm 18671 . . 3 SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡})
21dmmptss 6230 . 2 dom SubMgm ⊆ Mgm
3 elfvdm 6913 . 2 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ dom SubMgm)
42, 3sselid 3956 1 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3051  {crab 3415  𝒫 cpw 4575  dom cdm 5654  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Mgmcmgm 18616  SubMgmcsubmgm 18669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fv 6539  df-submgm 18671
This theorem is referenced by:  submgmss  18683  submgmcl  18685  submgmmgm  18686  subsubmgm  18688  resmgmhm2  18690
  Copyright terms: Public domain W3C validator