![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submgmrcl | Structured version Visualization version GIF version |
Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.) |
Ref | Expression |
---|---|
submgmrcl | ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-submgm 18731 | . . 3 ⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) | |
2 | 1 | dmmptss 6272 | . 2 ⊢ dom SubMgm ⊆ Mgm |
3 | elfvdm 6957 | . 2 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ dom SubMgm) | |
4 | 2, 3 | sselid 4006 | 1 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 {crab 3443 𝒫 cpw 4622 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Mgmcmgm 18676 SubMgmcsubmgm 18729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-submgm 18731 |
This theorem is referenced by: submgmss 18743 submgmcl 18745 submgmmgm 18746 subsubmgm 18748 resmgmhm2 18750 |
Copyright terms: Public domain | W3C validator |