MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submgmrcl Structured version   Visualization version   GIF version

Theorem submgmrcl 18721
Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.)
Assertion
Ref Expression
submgmrcl (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)

Proof of Theorem submgmrcl
Dummy variables 𝑡 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submgm 18719 . . 3 SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡})
21dmmptss 6263 . 2 dom SubMgm ⊆ Mgm
3 elfvdm 6944 . 2 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ dom SubMgm)
42, 3sselid 3993 1 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3059  {crab 3433  𝒫 cpw 4605  dom cdm 5689  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Mgmcmgm 18664  SubMgmcsubmgm 18717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fv 6571  df-submgm 18719
This theorem is referenced by:  submgmss  18731  submgmcl  18733  submgmmgm  18734  subsubmgm  18736  resmgmhm2  18738
  Copyright terms: Public domain W3C validator