| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submgmrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.) |
| Ref | Expression |
|---|---|
| submgmrcl | ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-submgm 18627 | . . 3 ⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) | |
| 2 | 1 | dmmptss 6217 | . 2 ⊢ dom SubMgm ⊆ Mgm |
| 3 | elfvdm 6898 | . 2 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ dom SubMgm) | |
| 4 | 2, 3 | sselid 3947 | 1 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 {crab 3408 𝒫 cpw 4566 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Mgmcmgm 18572 SubMgmcsubmgm 18625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 df-submgm 18627 |
| This theorem is referenced by: submgmss 18639 submgmcl 18641 submgmmgm 18642 subsubmgm 18644 resmgmhm2 18646 |
| Copyright terms: Public domain | W3C validator |