Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submgmrcl Structured version   Visualization version   GIF version

Theorem submgmrcl 44328
 Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.)
Assertion
Ref Expression
submgmrcl (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)

Proof of Theorem submgmrcl
Dummy variables 𝑡 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submgm 44326 . . 3 SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡})
21dmmptss 6082 . 2 dom SubMgm ⊆ Mgm
3 elfvdm 6693 . 2 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ dom SubMgm)
42, 3sseldi 3951 1 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2115  ∀wral 3133  {crab 3137  𝒫 cpw 4522  dom cdm 5542  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  Mgmcmgm 17850  SubMgmcsubmgm 44324 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-xp 5548  df-rel 5549  df-cnv 5550  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fv 6351  df-submgm 44326 This theorem is referenced by:  submgmss  44338  submgmcl  44340  submgmmgm  44341  subsubmgm  44343  resmgmhm2  44345
 Copyright terms: Public domain W3C validator