Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > submgmrcl | Structured version Visualization version GIF version |
Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.) |
Ref | Expression |
---|---|
submgmrcl | ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-submgm 44852 | . . 3 ⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) | |
2 | 1 | dmmptss 6067 | . 2 ⊢ dom SubMgm ⊆ Mgm |
3 | elfvdm 6700 | . 2 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ dom SubMgm) | |
4 | 2, 3 | sseldi 3873 | 1 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3053 {crab 3057 𝒫 cpw 4485 dom cdm 5519 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 +gcplusg 16661 Mgmcmgm 17959 SubMgmcsubmgm 44850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-xp 5525 df-rel 5526 df-cnv 5527 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fv 6341 df-submgm 44852 |
This theorem is referenced by: submgmss 44864 submgmcl 44866 submgmmgm 44867 subsubmgm 44869 resmgmhm2 44871 |
Copyright terms: Public domain | W3C validator |