| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tpos | Structured version Visualization version GIF version | ||
| Description: Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| df-tpos | ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | ctpos 8204 | . 2 class tpos 𝐹 |
| 3 | vx | . . . 4 setvar 𝑥 | |
| 4 | 1 | cdm 5638 | . . . . . 6 class dom 𝐹 |
| 5 | 4 | ccnv 5637 | . . . . 5 class ◡dom 𝐹 |
| 6 | c0 4296 | . . . . . 6 class ∅ | |
| 7 | 6 | csn 4589 | . . . . 5 class {∅} |
| 8 | 5, 7 | cun 3912 | . . . 4 class (◡dom 𝐹 ∪ {∅}) |
| 9 | 3 | cv 1539 | . . . . . . 7 class 𝑥 |
| 10 | 9 | csn 4589 | . . . . . 6 class {𝑥} |
| 11 | 10 | ccnv 5637 | . . . . 5 class ◡{𝑥} |
| 12 | 11 | cuni 4871 | . . . 4 class ∪ ◡{𝑥} |
| 13 | 3, 8, 12 | cmpt 5188 | . . 3 class (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
| 14 | 1, 13 | ccom 5642 | . 2 class (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 15 | 2, 14 | wceq 1540 | 1 wff tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: tposss 8206 tposssxp 8209 brtpos2 8211 tposfun 8221 dftpos2 8222 dftpos4 8224 dftpos5 48862 dmtposss 48864 tposrescnv 48867 |
| Copyright terms: Public domain | W3C validator |