![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposfun | Structured version Visualization version GIF version |
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfun | ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6173 | . . 3 ⊢ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
2 | funco 6175 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
3 | 1, 2 | mpan2 681 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
4 | df-tpos 7634 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
5 | 4 | funeqi 6156 | . 2 ⊢ (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
6 | 3, 5 | sylibr 226 | 1 ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3790 ∅c0 4141 {csn 4398 ∪ cuni 4671 ↦ cmpt 4965 ◡ccnv 5354 dom cdm 5355 ∘ ccom 5359 Fun wfun 6129 tpos ctpos 7633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-fun 6137 df-tpos 7634 |
This theorem is referenced by: tposfn2 7656 |
Copyright terms: Public domain | W3C validator |