Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposfun | Structured version Visualization version GIF version |
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfun | ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6456 | . . 3 ⊢ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
2 | funco 6458 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
4 | df-tpos 8013 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
5 | 4 | funeqi 6439 | . 2 ⊢ (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
6 | 3, 5 | sylibr 233 | 1 ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3881 ∅c0 4253 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 ∘ ccom 5584 Fun wfun 6412 tpos ctpos 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 df-tpos 8013 |
This theorem is referenced by: tposfn2 8035 |
Copyright terms: Public domain | W3C validator |