![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposfun | Structured version Visualization version GIF version |
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfun | ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6618 | . . 3 ⊢ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
2 | funco 6620 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
4 | df-tpos 8269 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
5 | 4 | funeqi 6601 | . 2 ⊢ (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
6 | 3, 5 | sylibr 234 | 1 ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3974 ∅c0 4352 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 ∘ ccom 5704 Fun wfun 6569 tpos ctpos 8268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6577 df-tpos 8269 |
This theorem is referenced by: tposfn2 8291 |
Copyright terms: Public domain | W3C validator |