MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfun Structured version   Visualization version   GIF version

Theorem tposfun 8181
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun (Fun 𝐹 → Fun tpos 𝐹)

Proof of Theorem tposfun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funmpt 6527 . . 3 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
2 funco 6529 . . 3 ((Fun 𝐹 ∧ Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
31, 2mpan2 691 . 2 (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
4 df-tpos 8165 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
54funeqi 6510 . 2 (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
63, 5sylibr 234 1 (Fun 𝐹 → Fun tpos 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3896  c0 4282  {csn 4577   cuni 4860  cmpt 5176  ccnv 5620  dom cdm 5621  ccom 5625  Fun wfun 6483  tpos ctpos 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-fun 6491  df-tpos 8165
This theorem is referenced by:  tposfn2  8187
  Copyright terms: Public domain W3C validator