MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfun Structured version   Visualization version   GIF version

Theorem tposfun 8198
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun (Fun 𝐹 → Fun tpos 𝐹)

Proof of Theorem tposfun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funmpt 6538 . . 3 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
2 funco 6540 . . 3 ((Fun 𝐹 ∧ Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
31, 2mpan2 691 . 2 (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
4 df-tpos 8182 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
54funeqi 6521 . 2 (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
63, 5sylibr 234 1 (Fun 𝐹 → Fun tpos 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3909  c0 4292  {csn 4585   cuni 4867  cmpt 5183  ccnv 5630  dom cdm 5631  ccom 5635  Fun wfun 6493  tpos ctpos 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-fun 6501  df-tpos 8182
This theorem is referenced by:  tposfn2  8204
  Copyright terms: Public domain W3C validator