| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposfun | Structured version Visualization version GIF version | ||
| Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfun | ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6583 | . . 3 ⊢ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 2 | funco 6585 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
| 4 | df-tpos 8232 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 5 | 4 | funeqi 6566 | . 2 ⊢ (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
| 6 | 3, 5 | sylibr 234 | 1 ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∪ cun 3929 ∅c0 4313 {csn 4606 ∪ cuni 4887 ↦ cmpt 5205 ◡ccnv 5664 dom cdm 5665 ∘ ccom 5669 Fun wfun 6534 tpos ctpos 8231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-fun 6542 df-tpos 8232 |
| This theorem is referenced by: tposfn2 8254 |
| Copyright terms: Public domain | W3C validator |