MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos4 Structured version   Visualization version   GIF version

Theorem dftpos4 7613
Description: Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
dftpos4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos4
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tpos 7594 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 relcnv 5724 . . . . . . 7 Rel dom 𝐹
3 df-rel 5329 . . . . . . 7 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
42, 3mpbi 221 . . . . . 6 dom 𝐹 ⊆ (V × V)
5 unss1 3992 . . . . . 6 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
6 resmpt 5665 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) → ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
74, 5, 6mp2b 10 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
8 resss 5636 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
97, 8eqsstr3i 3844 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
10 coss2 5491 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
119, 10ax-mp 5 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
121, 11eqsstri 3843 . 2 tpos 𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
13 relco 5858 . . 3 Rel (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
14 vex 3405 . . . . 5 𝑦 ∈ V
15 vex 3405 . . . . 5 𝑧 ∈ V
1614, 15opelco 5506 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧))
17 vex 3405 . . . . . . . . 9 𝑤 ∈ V
18 eleq1 2884 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅}) ↔ 𝑦 ∈ ((V × V) ∪ {∅})))
19 sneq 4391 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019cnveqd 5510 . . . . . . . . . . . 12 (𝑥 = 𝑦{𝑥} = {𝑦})
2120unieqd 4651 . . . . . . . . . . 11 (𝑥 = 𝑦 {𝑥} = {𝑦})
2221eqeq2d 2827 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 = {𝑥} ↔ 𝑧 = {𝑦}))
2318, 22anbi12d 618 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦})))
24 eqeq1 2821 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = {𝑦} ↔ 𝑤 = {𝑦}))
2524anbi2d 616 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦})))
26 df-mpt 4935 . . . . . . . . 9 (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥})}
2714, 17, 23, 25, 26brab 5204 . . . . . . . 8 (𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}))
28 simplr 776 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = {𝑦})
2917, 15breldm 5541 . . . . . . . . . . . . 13 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
3029adantl 469 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹)
3128, 30eqeltrrd 2897 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦} ∈ dom 𝐹)
32 elvv 5388 . . . . . . . . . . . . . 14 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
33 opswap 5847 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑤⟩} = ⟨𝑤, 𝑧
3433eleq1i 2887 . . . . . . . . . . . . . . . . 17 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3515, 17opelcnv 5516 . . . . . . . . . . . . . . . . 17 (⟨𝑧, 𝑤⟩ ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3634, 35bitr4i 269 . . . . . . . . . . . . . . . 16 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)
37 sneq 4391 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3837cnveqd 5510 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3938unieqd 4651 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
4039eleq1d 2881 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹 {⟨𝑧, 𝑤⟩} ∈ dom 𝐹))
41 eleq1 2884 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹))
4240, 41bibi12d 336 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → (( {𝑦} ∈ dom 𝐹𝑦dom 𝐹) ↔ ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)))
4336, 42mpbiri 249 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4443exlimivv 2023 . . . . . . . . . . . . . 14 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4532, 44sylbi 208 . . . . . . . . . . . . 13 (𝑦 ∈ (V × V) → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4645biimpcd 240 . . . . . . . . . . . 12 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦dom 𝐹))
47 elun1 3990 . . . . . . . . . . . 12 (𝑦dom 𝐹𝑦 ∈ (dom 𝐹 ∪ {∅}))
4846, 47syl6 35 . . . . . . . . . . 11 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
4931, 48syl 17 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
50 elun2 3991 . . . . . . . . . . 11 (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
5150a1i 11 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
52 simpll 774 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪ {∅}))
53 elun 3963 . . . . . . . . . . 11 (𝑦 ∈ ((V × V) ∪ {∅}) ↔ (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5452, 53sylib 209 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5549, 51, 54mpjaod 878 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
56 simpr 473 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧)
5728, 56eqbrtrrd 4879 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦}𝐹𝑧)
5855, 57jca 503 . . . . . . . 8 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
5927, 58sylanb 572 . . . . . . 7 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
60 brtpos2 7600 . . . . . . . 8 (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧)))
6115, 60ax-mp 5 . . . . . . 7 (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
6259, 61sylibr 225 . . . . . 6 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧)
63 df-br 4856 . . . . . 6 (𝑦tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6462, 63sylib 209 . . . . 5 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6564exlimiv 2021 . . . 4 (∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6616, 65sylbi 208 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6713, 66relssi 5424 . 2 (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ⊆ tpos 𝐹
6812, 67eqssi 3825 1 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wex 1859  wcel 2157  Vcvv 3402  cun 3778  wss 3780  c0 4127  {csn 4381  cop 4387   cuni 4641   class class class wbr 4855  cmpt 4934   × cxp 5320  ccnv 5321  dom cdm 5322  cres 5324  ccom 5326  Rel wrel 5327  tpos ctpos 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3404  df-sbc 3645  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5230  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-iota 6071  df-fun 6110  df-fn 6111  df-fv 6116  df-tpos 7594
This theorem is referenced by:  tposco  7625  nftpos  7629  oftpos  20477
  Copyright terms: Public domain W3C validator