MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos4 Structured version   Visualization version   GIF version

Theorem dftpos4 8032
Description: Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
dftpos4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos4
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tpos 8013 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 relcnv 6001 . . . . . . 7 Rel dom 𝐹
3 df-rel 5587 . . . . . . 7 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
42, 3mpbi 229 . . . . . 6 dom 𝐹 ⊆ (V × V)
5 unss1 4109 . . . . . 6 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
6 resmpt 5934 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) → ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
74, 5, 6mp2b 10 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
8 resss 5905 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
97, 8eqsstrri 3952 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
10 coss2 5754 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
119, 10ax-mp 5 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
121, 11eqsstri 3951 . 2 tpos 𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
13 relco 6137 . . 3 Rel (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
14 vex 3426 . . . . 5 𝑦 ∈ V
15 vex 3426 . . . . 5 𝑧 ∈ V
1614, 15opelco 5769 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧))
17 vex 3426 . . . . . . . . 9 𝑤 ∈ V
18 eleq1 2826 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅}) ↔ 𝑦 ∈ ((V × V) ∪ {∅})))
19 sneq 4568 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019cnveqd 5773 . . . . . . . . . . . 12 (𝑥 = 𝑦{𝑥} = {𝑦})
2120unieqd 4850 . . . . . . . . . . 11 (𝑥 = 𝑦 {𝑥} = {𝑦})
2221eqeq2d 2749 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 = {𝑥} ↔ 𝑧 = {𝑦}))
2318, 22anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦})))
24 eqeq1 2742 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = {𝑦} ↔ 𝑤 = {𝑦}))
2524anbi2d 628 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦})))
26 df-mpt 5154 . . . . . . . . 9 (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥})}
2714, 17, 23, 25, 26brab 5449 . . . . . . . 8 (𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}))
28 simplr 765 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = {𝑦})
2917, 15breldm 5806 . . . . . . . . . . . . 13 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
3029adantl 481 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹)
3128, 30eqeltrrd 2840 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦} ∈ dom 𝐹)
32 elvv 5652 . . . . . . . . . . . . . 14 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
33 opswap 6121 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑤⟩} = ⟨𝑤, 𝑧
3433eleq1i 2829 . . . . . . . . . . . . . . . . 17 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3515, 17opelcnv 5779 . . . . . . . . . . . . . . . . 17 (⟨𝑧, 𝑤⟩ ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3634, 35bitr4i 277 . . . . . . . . . . . . . . . 16 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)
37 sneq 4568 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3837cnveqd 5773 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3938unieqd 4850 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
4039eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹 {⟨𝑧, 𝑤⟩} ∈ dom 𝐹))
41 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹))
4240, 41bibi12d 345 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → (( {𝑦} ∈ dom 𝐹𝑦dom 𝐹) ↔ ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)))
4336, 42mpbiri 257 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4443exlimivv 1936 . . . . . . . . . . . . . 14 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4532, 44sylbi 216 . . . . . . . . . . . . 13 (𝑦 ∈ (V × V) → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4645biimpcd 248 . . . . . . . . . . . 12 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦dom 𝐹))
47 elun1 4106 . . . . . . . . . . . 12 (𝑦dom 𝐹𝑦 ∈ (dom 𝐹 ∪ {∅}))
4846, 47syl6 35 . . . . . . . . . . 11 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
4931, 48syl 17 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
50 elun2 4107 . . . . . . . . . . 11 (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
5150a1i 11 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
52 simpll 763 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪ {∅}))
53 elun 4079 . . . . . . . . . . 11 (𝑦 ∈ ((V × V) ∪ {∅}) ↔ (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5452, 53sylib 217 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5549, 51, 54mpjaod 856 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
56 simpr 484 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧)
5728, 56eqbrtrrd 5094 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦}𝐹𝑧)
5855, 57jca 511 . . . . . . . 8 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
5927, 58sylanb 580 . . . . . . 7 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
60 brtpos2 8019 . . . . . . . 8 (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧)))
6115, 60ax-mp 5 . . . . . . 7 (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
6259, 61sylibr 233 . . . . . 6 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧)
63 df-br 5071 . . . . . 6 (𝑦tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6462, 63sylib 217 . . . . 5 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6564exlimiv 1934 . . . 4 (∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6616, 65sylbi 216 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6713, 66relssi 5686 . 2 (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ⊆ tpos 𝐹
6812, 67eqssi 3933 1 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  cres 5582  ccom 5584  Rel wrel 5585  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-tpos 8013
This theorem is referenced by:  tposco  8044  nftpos  8048  oftpos  21509
  Copyright terms: Public domain W3C validator