| Step | Hyp | Ref
| Expression |
| 1 | | df-tpos 8251 |
. . 3
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 2 | | relcnv 6122 |
. . . . . . 7
⊢ Rel ◡dom 𝐹 |
| 3 | | df-rel 5692 |
. . . . . . 7
⊢ (Rel
◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) |
| 4 | 2, 3 | mpbi 230 |
. . . . . 6
⊢ ◡dom 𝐹 ⊆ (V × V) |
| 5 | | unss1 4185 |
. . . . . 6
⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V)
∪ {∅})) |
| 6 | | resmpt 6055 |
. . . . . 6
⊢ ((◡dom 𝐹 ∪ {∅}) ⊆ ((V × V)
∪ {∅}) → ((𝑥
∈ ((V × V) ∪ {∅}) ↦ ∪
◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 7 | 4, 5, 6 | mp2b 10 |
. . . . 5
⊢ ((𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
| 8 | | resss 6019 |
. . . . 5
⊢ ((𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) |
| 9 | 7, 8 | eqsstrri 4031 |
. . . 4
⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}) |
| 10 | | coss2 5867 |
. . . 4
⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}) → (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}))) |
| 11 | 9, 10 | ax-mp 5 |
. . 3
⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |
| 12 | 1, 11 | eqsstri 4030 |
. 2
⊢ tpos
𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |
| 13 | | relco 6126 |
. . 3
⊢ Rel
(𝐹 ∘ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥})) |
| 14 | | vex 3484 |
. . . . 5
⊢ 𝑦 ∈ V |
| 15 | | vex 3484 |
. . . . 5
⊢ 𝑧 ∈ V |
| 16 | 14, 15 | opelco 5882 |
. . . 4
⊢
(〈𝑦, 𝑧〉 ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧)) |
| 17 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 18 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅})
↔ 𝑦 ∈ ((V ×
V) ∪ {∅}))) |
| 19 | | sneq 4636 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 20 | 19 | cnveqd 5886 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ◡{𝑥} = ◡{𝑦}) |
| 21 | 20 | unieqd 4920 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ∪ ◡{𝑥} = ∪ ◡{𝑦}) |
| 22 | 21 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑧 = ∪ ◡{𝑥} ↔ 𝑧 = ∪ ◡{𝑦})) |
| 23 | 18, 22 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑦}))) |
| 24 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 = ∪ ◡{𝑦} ↔ 𝑤 = ∪ ◡{𝑦})) |
| 25 | 24 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑤 = ∪ ◡{𝑦}))) |
| 26 | | df-mpt 5226 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑥})} |
| 27 | 14, 17, 23, 25, 26 | brab 5548 |
. . . . . . . 8
⊢ (𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑤 = ∪ ◡{𝑦})) |
| 28 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = ∪ ◡{𝑦}) |
| 29 | 17, 15 | breldm 5919 |
. . . . . . . . . . . . 13
⊢ (𝑤𝐹𝑧 → 𝑤 ∈ dom 𝐹) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹) |
| 31 | 28, 30 | eqeltrrd 2842 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → ∪ ◡{𝑦} ∈ dom 𝐹) |
| 32 | | elvv 5760 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (V × V) ↔
∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉) |
| 33 | | opswap 6249 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ◡{〈𝑧, 𝑤〉} = 〈𝑤, 𝑧〉 |
| 34 | 33 | eleq1i 2832 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑤, 𝑧〉 ∈ dom 𝐹) |
| 35 | 15, 17 | opelcnv 5892 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑧, 𝑤〉 ∈ ◡dom 𝐹 ↔ 〈𝑤, 𝑧〉 ∈ dom 𝐹) |
| 36 | 34, 35 | bitr4i 278 |
. . . . . . . . . . . . . . . 16
⊢ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹) |
| 37 | | sneq 4636 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈𝑧, 𝑤〉 → {𝑦} = {〈𝑧, 𝑤〉}) |
| 38 | 37 | cnveqd 5886 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ◡{𝑦} = ◡{〈𝑧, 𝑤〉}) |
| 39 | 38 | unieqd 4920 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ∪
◡{𝑦} = ∪ ◡{〈𝑧, 𝑤〉}) |
| 40 | 39 | eleq1d 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ ∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹)) |
| 41 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦 ∈ ◡dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹)) |
| 42 | 40, 41 | bibi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ((∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹) ↔ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹))) |
| 43 | 36, 42 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
| 44 | 43 | exlimivv 1932 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
| 45 | 32, 44 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (V × V) →
(∪ ◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
| 46 | 45 | biimpcd 249 |
. . . . . . . . . . . 12
⊢ (∪ ◡{𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ ◡dom 𝐹)) |
| 47 | | elun1 4182 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ◡dom 𝐹 → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
| 48 | 46, 47 | syl6 35 |
. . . . . . . . . . 11
⊢ (∪ ◡{𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 49 | 31, 48 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 50 | | elun2 4183 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {∅} → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
| 51 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 52 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪
{∅})) |
| 53 | | elun 4153 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ((V × V) ∪
{∅}) ↔ (𝑦 ∈
(V × V) ∨ 𝑦 ∈
{∅})) |
| 54 | 52, 53 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅})) |
| 55 | 49, 51, 54 | mpjaod 861 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
| 56 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧) |
| 57 | 28, 56 | eqbrtrrd 5167 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → ∪ ◡{𝑦}𝐹𝑧) |
| 58 | 55, 57 | jca 511 |
. . . . . . . 8
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
| 59 | 27, 58 | sylanb 581 |
. . . . . . 7
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
| 60 | | brtpos2 8257 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧))) |
| 61 | 15, 60 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
| 62 | 59, 61 | sylibr 234 |
. . . . . 6
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧) |
| 63 | | df-br 5144 |
. . . . . 6
⊢ (𝑦tpos 𝐹𝑧 ↔ 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 64 | 62, 63 | sylib 218 |
. . . . 5
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 65 | 64 | exlimiv 1930 |
. . . 4
⊢
(∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 66 | 16, 65 | sylbi 217 |
. . 3
⊢
(〈𝑦, 𝑧〉 ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 67 | 13, 66 | relssi 5797 |
. 2
⊢ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) ⊆ tpos 𝐹 |
| 68 | 12, 67 | eqssi 4000 |
1
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |