MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos2 Structured version   Visualization version   GIF version

Theorem brtpos2 8048
Description: Value of the transposition at a pair 𝐴, 𝐵. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))

Proof of Theorem brtpos2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 8047 . . . 4 Rel tpos 𝐹
21brrelex1i 5643 . . 3 (𝐴tpos 𝐹𝐵𝐴 ∈ V)
32a1i 11 . 2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵𝐴 ∈ V))
4 elex 3450 . . . 4 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → 𝐴 ∈ V)
54adantr 481 . . 3 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V)
65a1i 11 . 2 (𝐵𝑉 → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V))
7 df-tpos 8042 . . . . . 6 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
87breqi 5080 . . . . 5 (𝐴tpos 𝐹𝐵𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵)
9 brcog 5775 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
108, 9bitrid 282 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
11 funmpt 6472 . . . . . . . . . . 11 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
12 funbrfv2b 6827 . . . . . . . . . . 11 (Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) → (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦)))
1311, 12ax-mp 5 . . . . . . . . . 10 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦))
14 snex 5354 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
1514cnvex 7772 . . . . . . . . . . . . . . 15 {𝑥} ∈ V
1615uniex 7594 . . . . . . . . . . . . . 14 {𝑥} ∈ V
17 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
1816, 17dmmpti 6577 . . . . . . . . . . . . 13 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (dom 𝐹 ∪ {∅})
1918eleq2i 2830 . . . . . . . . . . . 12 (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
20 eqcom 2745 . . . . . . . . . . . 12 (((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴))
2119, 20anbi12i 627 . . . . . . . . . . 11 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)))
22 sneq 4571 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2322cnveqd 5784 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴{𝑥} = {𝐴})
2423unieqd 4853 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 {𝑥} = {𝐴})
25 snex 5354 . . . . . . . . . . . . . . . 16 {𝐴} ∈ V
2625cnvex 7772 . . . . . . . . . . . . . . 15 {𝐴} ∈ V
2726uniex 7594 . . . . . . . . . . . . . 14 {𝐴} ∈ V
2824, 17, 27fvmpt 6875 . . . . . . . . . . . . 13 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
2928eqeq2d 2749 . . . . . . . . . . . 12 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) ↔ 𝑦 = {𝐴}))
3029pm5.32i 575 . . . . . . . . . . 11 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3121, 30bitri 274 . . . . . . . . . 10 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3213, 31bitri 274 . . . . . . . . 9 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3332biancomi 463 . . . . . . . 8 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
3433anbi1i 624 . . . . . . 7 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵))
35 anass 469 . . . . . . 7 (((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
3634, 35bitri 274 . . . . . 6 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
3736exbii 1850 . . . . 5 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
38 breq1 5077 . . . . . . 7 (𝑦 = {𝐴} → (𝑦𝐹𝐵 {𝐴}𝐹𝐵))
3938anbi2d 629 . . . . . 6 (𝑦 = {𝐴} → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
4027, 39ceqsexv 3479 . . . . 5 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
4137, 40bitri 274 . . . 4 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
4210, 41bitrdi 287 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
4342expcom 414 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))))
443, 6, 43pm5.21ndd 381 1 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cun 3885  c0 4256  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  ccom 5593  Fun wfun 6427  cfv 6433  tpos ctpos 8041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-tpos 8042
This theorem is referenced by:  brtpos0  8049  reldmtpos  8050  brtpos  8051  dftpos4  8061  tpostpos  8062
  Copyright terms: Public domain W3C validator