Step | Hyp | Ref
| Expression |
1 | | coss1 5753 |
. . 3
⊢ (𝐹 ⊆ 𝐺 → (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
2 | | dmss 5800 |
. . . . . 6
⊢ (𝐹 ⊆ 𝐺 → dom 𝐹 ⊆ dom 𝐺) |
3 | | cnvss 5770 |
. . . . . 6
⊢ (dom
𝐹 ⊆ dom 𝐺 → ◡dom 𝐹 ⊆ ◡dom 𝐺) |
4 | | unss1 4109 |
. . . . . 6
⊢ (◡dom 𝐹 ⊆ ◡dom 𝐺 → (◡dom 𝐹 ∪ {∅}) ⊆ (◡dom 𝐺 ∪ {∅})) |
5 | | resmpt 5934 |
. . . . . 6
⊢ ((◡dom 𝐹 ∪ {∅}) ⊆ (◡dom 𝐺 ∪ {∅}) → ((𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
6 | 2, 3, 4, 5 | 4syl 19 |
. . . . 5
⊢ (𝐹 ⊆ 𝐺 → ((𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
7 | | resss 5905 |
. . . . 5
⊢ ((𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
8 | 6, 7 | eqsstrrdi 3972 |
. . . 4
⊢ (𝐹 ⊆ 𝐺 → (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
9 | | coss2 5754 |
. . . 4
⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}) → (𝐺 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝐹 ⊆ 𝐺 → (𝐺 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
11 | 1, 10 | sstrd 3927 |
. 2
⊢ (𝐹 ⊆ 𝐺 → (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
12 | | df-tpos 8013 |
. 2
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
13 | | df-tpos 8013 |
. 2
⊢ tpos
𝐺 = (𝐺 ∘ (𝑥 ∈ (◡dom 𝐺 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
14 | 11, 12, 13 | 3sstr4g 3962 |
1
⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) |