MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposssxp Structured version   Visualization version   GIF version

Theorem tposssxp 8227
Description: The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
tposssxp tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)

Proof of Theorem tposssxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 8223 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 cossxp 6261 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
31, 2eqsstri 4005 . 2 tpos 𝐹 ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
4 eqid 2735 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 6230 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 xpss1 5673 . . 3 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅}) → (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹))
75, 6ax-mp 5 . 2 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
83, 7sstri 3968 1 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  cun 3924  wss 3926  c0 4308  {csn 4601   cuni 4883  cmpt 5201   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  ccom 5658  tpos ctpos 8222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-tpos 8223
This theorem is referenced by:  reltpos  8228  tposexg  8237  wuntpos  10746  catcoppccl  18128
  Copyright terms: Public domain W3C validator