MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposssxp Structured version   Visualization version   GIF version

Theorem tposssxp 8046
Description: The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
tposssxp tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)

Proof of Theorem tposssxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 8042 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 cossxp 6175 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
31, 2eqsstri 3955 . 2 tpos 𝐹 ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
4 eqid 2738 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 6144 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 xpss1 5608 . . 3 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅}) → (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹))
75, 6ax-mp 5 . 2 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
83, 7sstri 3930 1 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  cun 3885  wss 3887  c0 4256  {csn 4561   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  ccom 5593  tpos ctpos 8041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-tpos 8042
This theorem is referenced by:  reltpos  8047  tposexg  8056  wuntpos  10490  catcoppccl  17832  catcoppcclOLD  17833
  Copyright terms: Public domain W3C validator