MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposssxp Structured version   Visualization version   GIF version

Theorem tposssxp 8170
Description: The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
tposssxp tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)

Proof of Theorem tposssxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 8166 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 cossxp 6224 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
31, 2eqsstri 3984 . 2 tpos 𝐹 ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
4 eqid 2729 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 6194 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 xpss1 5642 . . 3 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅}) → (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹))
75, 6ax-mp 5 . 2 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
83, 7sstri 3947 1 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  cun 3903  wss 3905  c0 4286  {csn 4579   cuni 4861  cmpt 5176   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  ccom 5627  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-tpos 8166
This theorem is referenced by:  reltpos  8171  tposexg  8180  wuntpos  10647  catcoppccl  18042
  Copyright terms: Public domain W3C validator