Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposssxp | Structured version Visualization version GIF version |
Description: The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
tposssxp | ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tpos 8042 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
2 | cossxp 6175 | . . 3 ⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) | |
3 | 1, 2 | eqsstri 3955 | . 2 ⊢ tpos 𝐹 ⊆ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) |
4 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
5 | 4 | dmmptss 6144 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) |
6 | xpss1 5608 | . . 3 ⊢ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) → (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) |
8 | 3, 7 | sstri 3930 | 1 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ cuni 4839 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ∘ ccom 5593 tpos ctpos 8041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-tpos 8042 |
This theorem is referenced by: reltpos 8047 tposexg 8056 wuntpos 10490 catcoppccl 17832 catcoppcclOLD 17833 |
Copyright terms: Public domain | W3C validator |