MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos2 Structured version   Visualization version   GIF version

Theorem dftpos2 8286
Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 8281 . . 3 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
21reseq2d 6011 . 2 (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹dom 𝐹))
3 reltpos 8274 . . 3 Rel tpos 𝐹
4 resdm 6057 . . 3 (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹)
53, 4ax-mp 5 . 2 (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹
6 df-tpos 8269 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
76reseq1i 6007 . . 3 (tpos 𝐹dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹)
8 resco 6283 . . 3 ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹))
9 ssun1 4201 . . . . 5 dom 𝐹 ⊆ (dom 𝐹 ∪ {∅})
10 resmpt 6068 . . . . 5 (dom 𝐹 ⊆ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥}))
119, 10ax-mp 5 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥})
1211coeq2i 5885 . . 3 (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹)) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
137, 8, 123eqtri 2772 . 2 (tpos 𝐹dom 𝐹) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
142, 5, 133eqtr3g 2803 1 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3974  wss 3976  c0 4352  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  cres 5702  ccom 5704  Rel wrel 5705  tpos ctpos 8268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-fv 6583  df-tpos 8269
This theorem is referenced by:  tposf12  8294
  Copyright terms: Public domain W3C validator