| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftpos2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| dftpos2 | ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmtpos 8174 | . . 3 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
| 2 | 1 | reseq2d 5932 | . 2 ⊢ (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹 ↾ ◡dom 𝐹)) |
| 3 | reltpos 8167 | . . 3 ⊢ Rel tpos 𝐹 | |
| 4 | resdm 5979 | . . 3 ⊢ (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹 |
| 6 | df-tpos 8162 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 7 | 6 | reseq1i 5928 | . . 3 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) |
| 8 | resco 6202 | . . 3 ⊢ ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) | |
| 9 | ssun1 4127 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) | |
| 10 | resmpt 5990 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) |
| 12 | 11 | coeq2i 5804 | . . 3 ⊢ (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
| 13 | 7, 8, 12 | 3eqtri 2760 | . 2 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
| 14 | 2, 5, 13 | 3eqtr3g 2791 | 1 ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3896 ⊆ wss 3898 ∅c0 4282 {csn 4575 ∪ cuni 4858 ↦ cmpt 5174 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 tpos ctpos 8161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-tpos 8162 |
| This theorem is referenced by: tposf12 8187 |
| Copyright terms: Public domain | W3C validator |