MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos2 Structured version   Visualization version   GIF version

Theorem dftpos2 8179
Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 8174 . . 3 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
21reseq2d 5932 . 2 (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹dom 𝐹))
3 reltpos 8167 . . 3 Rel tpos 𝐹
4 resdm 5979 . . 3 (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹)
53, 4ax-mp 5 . 2 (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹
6 df-tpos 8162 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
76reseq1i 5928 . . 3 (tpos 𝐹dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹)
8 resco 6202 . . 3 ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹))
9 ssun1 4127 . . . . 5 dom 𝐹 ⊆ (dom 𝐹 ∪ {∅})
10 resmpt 5990 . . . . 5 (dom 𝐹 ⊆ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥}))
119, 10ax-mp 5 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥})
1211coeq2i 5804 . . 3 (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹)) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
137, 8, 123eqtri 2760 . 2 (tpos 𝐹dom 𝐹) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
142, 5, 133eqtr3g 2791 1 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3896  wss 3898  c0 4282  {csn 4575   cuni 4858  cmpt 5174  ccnv 5618  dom cdm 5619  cres 5621  ccom 5623  Rel wrel 5624  tpos ctpos 8161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-tpos 8162
This theorem is referenced by:  tposf12  8187
  Copyright terms: Public domain W3C validator