MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos2 Structured version   Visualization version   GIF version

Theorem dftpos2 8059
Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 8054 . . 3 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
21reseq2d 5891 . 2 (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹dom 𝐹))
3 reltpos 8047 . . 3 Rel tpos 𝐹
4 resdm 5936 . . 3 (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹)
53, 4ax-mp 5 . 2 (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹
6 df-tpos 8042 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
76reseq1i 5887 . . 3 (tpos 𝐹dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹)
8 resco 6154 . . 3 ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹))
9 ssun1 4106 . . . . 5 dom 𝐹 ⊆ (dom 𝐹 ∪ {∅})
10 resmpt 5945 . . . . 5 (dom 𝐹 ⊆ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥}))
119, 10ax-mp 5 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥})
1211coeq2i 5769 . . 3 (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹)) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
137, 8, 123eqtri 2770 . 2 (tpos 𝐹dom 𝐹) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
142, 5, 133eqtr3g 2801 1 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3885  wss 3887  c0 4256  {csn 4561   cuni 4839  cmpt 5157  ccnv 5588  dom cdm 5589  cres 5591  ccom 5593  Rel wrel 5594  tpos ctpos 8041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-tpos 8042
This theorem is referenced by:  tposf12  8067
  Copyright terms: Public domain W3C validator