Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-trpred | Structured version Visualization version GIF version |
Description: Define the transitive predecessors of a class 𝑋 under a relationship 𝑅 and a class 𝐴. This class can be thought of as the "smallest" class containing all elements of 𝐴 that are linked to 𝑋 by a chain of 𝑅 relationships (see trpredtr 33320 and trpredmintr 33321). Definition based off of Lemma 4.2 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory 33321 (check The Internet Archive for it now as Prof. Monk appears to have rewritten his website). (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
df-trpred | ⊢ TrPred(𝑅, 𝐴, 𝑋) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | ctrpred 33307 | . 2 class TrPred(𝑅, 𝐴, 𝑋) |
5 | va | . . . . . . 7 setvar 𝑎 | |
6 | cvv 3409 | . . . . . . 7 class V | |
7 | vy | . . . . . . . 8 setvar 𝑦 | |
8 | 5 | cv 1537 | . . . . . . . 8 class 𝑎 |
9 | 7 | cv 1537 | . . . . . . . . 9 class 𝑦 |
10 | 1, 2, 9 | cpred 6129 | . . . . . . . 8 class Pred(𝑅, 𝐴, 𝑦) |
11 | 7, 8, 10 | ciun 4886 | . . . . . . 7 class ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦) |
12 | 5, 6, 11 | cmpt 5115 | . . . . . 6 class (𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) |
13 | 1, 2, 3 | cpred 6129 | . . . . . 6 class Pred(𝑅, 𝐴, 𝑋) |
14 | 12, 13 | crdg 8060 | . . . . 5 class rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) |
15 | com 7584 | . . . . 5 class ω | |
16 | 14, 15 | cres 5529 | . . . 4 class (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
17 | 16 | crn 5528 | . . 3 class ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
18 | 17 | cuni 4801 | . 2 class ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
19 | 4, 18 | wceq 1538 | 1 wff TrPred(𝑅, 𝐴, 𝑋) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
Colors of variables: wff setvar class |
This definition is referenced by: dftrpred2 33309 trpredeq1 33310 trpredeq2 33311 trpredeq3 33312 trpredpred 33318 trpredex 33327 |
Copyright terms: Public domain | W3C validator |