MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpredeq1 Structured version   Visualization version   GIF version

Theorem trpredeq1 9450
Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
trpredeq1 (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))

Proof of Theorem trpredeq1
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 predeq1 6201 . . . . . . . 8 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐴, 𝑦))
21iuneq2d 4958 . . . . . . 7 (𝑅 = 𝑆 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦))
32mpteq2dv 5180 . . . . . 6 (𝑅 = 𝑆 → (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)))
4 predeq1 6201 . . . . . 6 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
5 rdgeq12 8228 . . . . . 6 (((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)) ∧ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)))
63, 4, 5syl2anc 583 . . . . 5 (𝑅 = 𝑆 → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)))
76reseq1d 5887 . . . 4 (𝑅 = 𝑆 → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω))
87rneqd 5844 . . 3 (𝑅 = 𝑆 → ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω))
98unieqd 4858 . 2 (𝑅 = 𝑆 ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω))
10 df-trpred 9448 . 2 TrPred(𝑅, 𝐴, 𝑋) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
11 df-trpred 9448 . 2 TrPred(𝑆, 𝐴, 𝑋) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω)
129, 10, 113eqtr4g 2804 1 (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3430   cuni 4844   ciun 4929  cmpt 5161  ran crn 5589  cres 5590  Predcpred 6198  ωcom 7700  reccrdg 8224  TrPredctrpred 9447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-xp 5594  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-iota 6388  df-fv 6438  df-ov 7271  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-trpred 9448
This theorem is referenced by:  trpredeq1d  9453
  Copyright terms: Public domain W3C validator