Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredeq1 Structured version   Visualization version   GIF version

Theorem trpredeq1 32316
Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
trpredeq1 (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))

Proof of Theorem trpredeq1
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 predeq1 5937 . . . . . . . 8 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐴, 𝑦))
21iuneq2d 4782 . . . . . . 7 (𝑅 = 𝑆 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦))
32mpteq2dv 4982 . . . . . 6 (𝑅 = 𝑆 → (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)))
4 predeq1 5937 . . . . . 6 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
5 rdgeq12 7794 . . . . . 6 (((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)) ∧ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)))
63, 4, 5syl2anc 579 . . . . 5 (𝑅 = 𝑆 → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)))
76reseq1d 5643 . . . 4 (𝑅 = 𝑆 → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω))
87rneqd 5600 . . 3 (𝑅 = 𝑆 → ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω))
98unieqd 4683 . 2 (𝑅 = 𝑆 ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω))
10 df-trpred 32314 . 2 TrPred(𝑅, 𝐴, 𝑋) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
11 df-trpred 32314 . 2 TrPred(𝑆, 𝐴, 𝑋) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω)
129, 10, 113eqtr4g 2839 1 (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  Vcvv 3398   cuni 4673   ciun 4755  cmpt 4967  ran crn 5358  cres 5359  Predcpred 5934  ωcom 7345  reccrdg 7790  TrPredctrpred 32313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-xp 5363  df-cnv 5365  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-iota 6101  df-fv 6145  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-trpred 32314
This theorem is referenced by:  trpredeq1d  32319
  Copyright terms: Public domain W3C validator