Step | Hyp | Ref
| Expression |
1 | | predeq1 6201 |
. . . . . . . 8
⊢ (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐴, 𝑦)) |
2 | 1 | iuneq2d 4958 |
. . . . . . 7
⊢ (𝑅 = 𝑆 → ∪
𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦) = ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)) |
3 | 2 | mpteq2dv 5180 |
. . . . . 6
⊢ (𝑅 = 𝑆 → (𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦))) |
4 | | predeq1 6201 |
. . . . . 6
⊢ (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) |
5 | | rdgeq12 8228 |
. . . . . 6
⊢ (((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)) ∧ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) → rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋))) |
6 | 3, 4, 5 | syl2anc 583 |
. . . . 5
⊢ (𝑅 = 𝑆 → rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋))) |
7 | 6 | reseq1d 5887 |
. . . 4
⊢ (𝑅 = 𝑆 → (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω)) |
8 | 7 | rneqd 5844 |
. . 3
⊢ (𝑅 = 𝑆 → ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω)) |
9 | 8 | unieqd 4858 |
. 2
⊢ (𝑅 = 𝑆 → ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω)) |
10 | | df-trpred 9448 |
. 2
⊢
TrPred(𝑅, 𝐴, 𝑋) = ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
11 | | df-trpred 9448 |
. 2
⊢
TrPred(𝑆, 𝐴, 𝑋) = ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑆, 𝐴, 𝑦)), Pred(𝑆, 𝐴, 𝑋)) ↾ ω) |
12 | 9, 10, 11 | 3eqtr4g 2804 |
1
⊢ (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) |