Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredmintr Structured version   Visualization version   GIF version

Theorem trpredmintr 32631
Description: The transitive predecessors form the smallest class transitive in 𝑅 and 𝐴. That is, if 𝐵 is another 𝑅, 𝐴 transitive class containing Pred(𝑅, 𝐴, 𝑋), then TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredmintr (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅   𝑦,𝑋

Proof of Theorem trpredmintr
Dummy variables 𝑎 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 32619 . 2 TrPred(𝑅, 𝐴, 𝑋) = 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)
2 fveq2 6504 . . . . . . . 8 (𝑗 = ∅ → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))
32sseq1d 3890 . . . . . . 7 (𝑗 = ∅ → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵))
43imbi2d 333 . . . . . 6 (𝑗 = ∅ → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵)))
5 fveq2 6504 . . . . . . . 8 (𝑗 = 𝑘 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘))
65sseq1d 3890 . . . . . . 7 (𝑗 = 𝑘 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵))
76imbi2d 333 . . . . . 6 (𝑗 = 𝑘 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)))
8 fveq2 6504 . . . . . . . 8 (𝑗 = suc 𝑘 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘))
98sseq1d 3890 . . . . . . 7 (𝑗 = suc 𝑘 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵))
109imbi2d 333 . . . . . 6 (𝑗 = suc 𝑘 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
11 fveq2 6504 . . . . . . . 8 (𝑗 = 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
1211sseq1d 3890 . . . . . . 7 (𝑗 = 𝑖 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
1312imbi2d 333 . . . . . 6 (𝑗 = 𝑖 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)))
14 setlikespec 6012 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 fr0g 7881 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
1614, 15syl 17 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
1716adantr 473 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
18 simprr 761 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
1917, 18eqsstrd 3897 . . . . . 6 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵)
20 fvex 6517 . . . . . . . . . . 11 ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V
21 trpredlem1 32627 . . . . . . . . . . . . . . . 16 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴)
2214, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴)
2322sseld 3859 . . . . . . . . . . . . . 14 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝐴))
24 setlikespec 6012 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
2524expcom 406 . . . . . . . . . . . . . . 15 (𝑅 Se 𝐴 → (𝑦𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2625adantl 474 . . . . . . . . . . . . . 14 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2723, 26syld 47 . . . . . . . . . . . . 13 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2827ralrimiv 3133 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
2928ad2antrr 714 . . . . . . . . . . 11 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
30 iunexg 7482 . . . . . . . . . . 11 ((((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V ∧ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
3120, 29, 30sylancr 579 . . . . . . . . . 10 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
32 nfcv 2934 . . . . . . . . . . 11 𝑎Pred(𝑅, 𝐴, 𝑋)
33 nfcv 2934 . . . . . . . . . . 11 𝑎𝑘
34 nfcv 2934 . . . . . . . . . . 11 𝑎 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦)
35 eqid 2780 . . . . . . . . . . 11 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
36 predeq3 5995 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑑 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑑))
3736cbviunv 4838 . . . . . . . . . . . . . . . . 17 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑑𝑎 Pred(𝑅, 𝐴, 𝑑)
38 iuneq1 4812 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 𝑑𝑎 Pred(𝑅, 𝐴, 𝑑) = 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
3937, 38syl5eq 2828 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
4039cbvmptv 5033 . . . . . . . . . . . . . . 15 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
41 rdgeq1 7857 . . . . . . . . . . . . . . 15 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)))
42 reseq1 5694 . . . . . . . . . . . . . . 15 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
4340, 41, 42mp2b 10 . . . . . . . . . . . . . 14 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
4443fveq1i 6505 . . . . . . . . . . . . 13 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)
4544eqeq2i 2792 . . . . . . . . . . . 12 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ↔ 𝑎 = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘))
46 iuneq1 4812 . . . . . . . . . . . 12 (𝑎 = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4745, 46sylbi 209 . . . . . . . . . . 11 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4832, 33, 34, 35, 47frsucmpt 7883 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4931, 48sylan2 584 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
5044sseq1i 3887 . . . . . . . . . . . 12 (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 ↔ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)
5150anbi2i 614 . . . . . . . . . . 11 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵))
52 nfv 1874 . . . . . . . . . . . . . . 15 𝑦(𝑋𝐴𝑅 Se 𝐴)
53 nfra1 3171 . . . . . . . . . . . . . . . 16 𝑦𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵
54 nfv 1874 . . . . . . . . . . . . . . . 16 𝑦Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵
5553, 54nfan 1863 . . . . . . . . . . . . . . 15 𝑦(∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
5652, 55nfan 1863 . . . . . . . . . . . . . 14 𝑦((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵))
57 nfv 1874 . . . . . . . . . . . . . 14 𝑦((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵
5856, 57nfan 1863 . . . . . . . . . . . . 13 𝑦(((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)
59 ssel 3854 . . . . . . . . . . . . . 14 (((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝐵))
60 rsp 3157 . . . . . . . . . . . . . . 15 (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → (𝑦𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6160ad2antrl 716 . . . . . . . . . . . . . 14 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑦𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6259, 61sylan9r 501 . . . . . . . . . . . . 13 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6358, 62ralrimi 3168 . . . . . . . . . . . 12 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6463adantl 474 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6551, 64sylan2b 585 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
66 iunss 4840 . . . . . . . . . 10 ( 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6765, 66sylibr 226 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6849, 67eqsstrd 3897 . . . . . . . 8 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)
6968exp32 413 . . . . . . 7 (𝑘 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
7069a2d 29 . . . . . 6 (𝑘 ∈ ω → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
714, 7, 10, 13, 19, 70finds 7429 . . . . 5 (𝑖 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
7271com12 32 . . . 4 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
7372ralrimiv 3133 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
74 iunss 4840 . . 3 ( 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵 ↔ ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
7573, 74sylibr 226 . 2 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
761, 75syl5eqss 3907 1 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wral 3090  Vcvv 3417  wss 3831  c0 4181   ciun 4797  cmpt 5013   Se wse 5368  cres 5413  Predcpred 5990  suc csuc 6036  cfv 6193  ωcom 7402  reccrdg 7855  TrPredctrpred 32617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-om 7403  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-trpred 32618
This theorem is referenced by:  trpredelss  32632  dftrpred3g  32633  trpredpo  32635
  Copyright terms: Public domain W3C validator