Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trpredex | Structured version Visualization version GIF version |
Description: The transitive
predecessors under a relation form a set.
This is the first theorem in the transitive predecessor series that requires the axiom of infinity. (Contributed by Scott Fenton, 18-Feb-2011.) |
Ref | Expression |
---|---|
trpredex | ⊢ TrPred(𝑅, 𝐴, 𝑋) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trpred 9323 | . 2 ⊢ TrPred(𝑅, 𝐴, 𝑋) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) | |
2 | frfnom 8170 | . . . . 5 ⊢ (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) Fn ω | |
3 | omex 9258 | . . . . 5 ⊢ ω ∈ V | |
4 | fnex 7033 | . . . . 5 ⊢ (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) Fn ω ∧ ω ∈ V) → (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V |
6 | 5 | rnex 7690 | . . 3 ⊢ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V |
7 | 6 | uniex 7529 | . 2 ⊢ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V |
8 | 1, 7 | eqeltri 2834 | 1 ⊢ TrPred(𝑅, 𝐴, 𝑋) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3408 ∪ cuni 4819 ∪ ciun 4904 ↦ cmpt 5135 ran crn 5552 ↾ cres 5553 Predcpred 6159 Fn wfn 6375 ωcom 7644 reccrdg 8145 TrPredctrpred 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-trpred 9323 |
This theorem is referenced by: frmin 9365 frr1 9375 |
Copyright terms: Public domain | W3C validator |