Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredpred Structured version   Visualization version   GIF version

Theorem trpredpred 33175
Description: Assuming it exists, the predecessor class is a subset of the transitive predecessors. (Contributed by Scott Fenton, 18-Feb-2011.)
Assertion
Ref Expression
trpredpred (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))

Proof of Theorem trpredpred
Dummy variables 𝑎 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0g 8058 . . . . . 6 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
2 frfnom 8057 . . . . . . 7 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) Fn ω
3 peano1 7585 . . . . . . 7 ∅ ∈ ω
4 fnbrfvb 6697 . . . . . . 7 (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) Fn ω ∧ ∅ ∈ ω) → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋) ↔ ∅(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋)))
52, 3, 4mp2an 691 . . . . . 6 (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋) ↔ ∅(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋))
61, 5sylib 221 . . . . 5 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ∅(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋))
7 0ex 5178 . . . . . 6 ∅ ∈ V
8 breq1 5036 . . . . . 6 (𝑧 = ∅ → (𝑧(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋) ↔ ∅(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋)))
97, 8spcev 3558 . . . . 5 (∅(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋) → ∃𝑧 𝑧(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋))
106, 9syl 17 . . . 4 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ∃𝑧 𝑧(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋))
11 elrng 5730 . . . 4 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → (Pred(𝑅, 𝐴, 𝑋) ∈ ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ↔ ∃𝑧 𝑧(rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)Pred(𝑅, 𝐴, 𝑋)))
1210, 11mpbird 260 . . 3 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ∈ ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
13 elssuni 4833 . . 3 (Pred(𝑅, 𝐴, 𝑋) ∈ ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) → Pred(𝑅, 𝐴, 𝑋) ⊆ ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
1412, 13syl 17 . 2 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
15 df-trpred 33165 . 2 TrPred(𝑅, 𝐴, 𝑋) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
1614, 15sseqtrrdi 3969 1 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wex 1781  wcel 2112  Vcvv 3444  wss 3884  c0 4246   cuni 4803   ciun 4884   class class class wbr 5033  cmpt 5113  ran crn 5524  cres 5525  Predcpred 6119   Fn wfn 6323  cfv 6328  ωcom 7564  reccrdg 8032  TrPredctrpred 33164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-trpred 33165
This theorem is referenced by:  dftrpred3g  33180  trpredpo  33182  frmin  33192  frr1  33252
  Copyright terms: Public domain W3C validator