Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredtr Structured version   Visualization version   GIF version

Theorem trpredtr 32678
Description: The transitive predecessors are transitive in 𝑅 and 𝐴 (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredtr ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))

Proof of Theorem trpredtr
Dummy variables 𝑎 𝑓 𝑖 𝑗 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 32674 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 simplr 765 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑖 ∈ ω)
3 peano2 7458 . . . . 5 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
42, 3syl 17 . . . 4 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → suc 𝑖 ∈ ω)
5 simpr 485 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
6 ssid 3910 . . . . . 6 Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)
7 predeq3 6027 . . . . . . . . 9 (𝑡 = 𝑌 → Pred(𝑅, 𝐴, 𝑡) = Pred(𝑅, 𝐴, 𝑌))
87sseq2d 3920 . . . . . . . 8 (𝑡 = 𝑌 → (Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)))
98rspcev 3559 . . . . . . 7 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → ∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡))
10 ssiun 4869 . . . . . . 7 (∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
119, 10syl 17 . . . . . 6 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
125, 6, 11sylancl 586 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
13 fvex 6551 . . . . . . 7 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V
14 setlikespec 6044 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 trpredlem1 32675 . . . . . . . . . . . 12 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1614, 15syl 17 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1716sseld 3888 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝐴))
18 setlikespec 6044 . . . . . . . . . . . 12 ((𝑡𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑡) ∈ V)
1918expcom 414 . . . . . . . . . . 11 (𝑅 Se 𝐴 → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2019adantl 482 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2117, 20syld 47 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2221ralrimiv 3148 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2322ad2antrr 722 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
24 iunexg 7520 . . . . . . 7 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V ∧ ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2513, 23, 24sylancr 587 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
26 nfcv 2949 . . . . . . 7 𝑓Pred(𝑅, 𝐴, 𝑋)
27 nfcv 2949 . . . . . . 7 𝑓𝑖
28 nfcv 2949 . . . . . . 7 𝑓 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡)
29 predeq3 6027 . . . . . . . . . . 11 (𝑦 = 𝑡 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑡))
3029cbviunv 4866 . . . . . . . . . 10 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡)
31 iuneq1 4840 . . . . . . . . . 10 (𝑎 = 𝑓 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3230, 31syl5eq 2843 . . . . . . . . 9 (𝑎 = 𝑓 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3332cbvmptv 5061 . . . . . . . 8 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
34 rdgeq1 7899 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)))
35 reseq1 5728 . . . . . . . 8 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
3633, 34, 35mp2b 10 . . . . . . 7 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
37 iuneq1 4840 . . . . . . 7 (𝑓 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
3826, 27, 28, 36, 37frsucmpt 7925 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
392, 25, 38syl2anc 584 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
4012, 39sseqtr4d 3929 . . . 4 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
41 fveq2 6538 . . . . . . . 8 (𝑗 = suc 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
4241sseq2d 3920 . . . . . . 7 (𝑗 = suc 𝑖 → (Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)))
4342rspcev 3559 . . . . . 6 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → ∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
44 ssiun 4869 . . . . . 6 (∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
4543, 44syl 17 . . . . 5 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
46 dftrpred2 32667 . . . . 5 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
4745, 46syl6sseqr 3939 . . . 4 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
484, 40, 47syl2anc 584 . . 3 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
4948rexlimdva2 3250 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
501, 49syl5bi 243 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106  Vcvv 3437  wss 3859   ciun 4825  cmpt 5041   Se wse 5400  cres 5445  Predcpred 6022  suc csuc 6068  cfv 6225  ωcom 7436  reccrdg 7897  TrPredctrpred 32665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-trpred 32666
This theorem is referenced by:  trpredelss  32680  frmin  32693  frrlem16  32752
  Copyright terms: Public domain W3C validator