MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpredtr Structured version   Visualization version   GIF version

Theorem trpredtr 9313
Description: Predecessors of a transitive predecessor are transitive predecessors. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredtr ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))

Proof of Theorem trpredtr
Dummy variables 𝑎 𝑓 𝑖 𝑗 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 9309 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 simplr 769 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑖 ∈ ω)
3 peano2 7646 . . . . 5 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
42, 3syl 17 . . . 4 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → suc 𝑖 ∈ ω)
5 simpr 488 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
6 ssid 3909 . . . . . 6 Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)
7 predeq3 6144 . . . . . . . . 9 (𝑡 = 𝑌 → Pred(𝑅, 𝐴, 𝑡) = Pred(𝑅, 𝐴, 𝑌))
87sseq2d 3919 . . . . . . . 8 (𝑡 = 𝑌 → (Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)))
98rspcev 3527 . . . . . . 7 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → ∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡))
10 ssiun 4941 . . . . . . 7 (∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
119, 10syl 17 . . . . . 6 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
125, 6, 11sylancl 589 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
13 fvex 6708 . . . . . . 7 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V
14 setlikespec 6161 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 trpredlem1 9310 . . . . . . . . . . . 12 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1614, 15syl 17 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1716sseld 3886 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝐴))
18 setlikespec 6161 . . . . . . . . . . . 12 ((𝑡𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑡) ∈ V)
1918expcom 417 . . . . . . . . . . 11 (𝑅 Se 𝐴 → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2019adantl 485 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2117, 20syld 47 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2221ralrimiv 3094 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2322ad2antrr 726 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
24 iunexg 7714 . . . . . . 7 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V ∧ ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2513, 23, 24sylancr 590 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
26 nfcv 2897 . . . . . . 7 𝑓Pred(𝑅, 𝐴, 𝑋)
27 nfcv 2897 . . . . . . 7 𝑓𝑖
28 nfcv 2897 . . . . . . 7 𝑓 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡)
29 predeq3 6144 . . . . . . . . . . 11 (𝑦 = 𝑡 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑡))
3029cbviunv 4935 . . . . . . . . . 10 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡)
31 iuneq1 4906 . . . . . . . . . 10 (𝑎 = 𝑓 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3230, 31syl5eq 2783 . . . . . . . . 9 (𝑎 = 𝑓 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3332cbvmptv 5143 . . . . . . . 8 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
34 rdgeq1 8125 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)))
35 reseq1 5830 . . . . . . . 8 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
3633, 34, 35mp2b 10 . . . . . . 7 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
37 iuneq1 4906 . . . . . . 7 (𝑓 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
3826, 27, 28, 36, 37frsucmpt 8151 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
392, 25, 38syl2anc 587 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
4012, 39sseqtrrd 3928 . . . 4 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
41 fveq2 6695 . . . . . . . 8 (𝑗 = suc 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
4241sseq2d 3919 . . . . . . 7 (𝑗 = suc 𝑖 → (Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)))
4342rspcev 3527 . . . . . 6 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → ∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
44 ssiun 4941 . . . . . 6 (∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
4543, 44syl 17 . . . . 5 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
46 dftrpred2 9302 . . . . 5 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
4745, 46sseqtrrdi 3938 . . . 4 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
484, 40, 47syl2anc 587 . . 3 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
4948rexlimdva2 3196 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
501, 49syl5bi 245 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  wss 3853   ciun 4890  cmpt 5120   Se wse 5492  cres 5538  Predcpred 6139  suc csuc 6193  cfv 6358  ωcom 7622  reccrdg 8123  TrPredctrpred 9300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-trpred 9301
This theorem is referenced by:  trpredelss  9316  frmin  33459  frrlem16  33506
  Copyright terms: Public domain W3C validator