Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredeq3 Structured version   Visualization version   GIF version

Theorem trpredeq3 32047
Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
trpredeq3 (𝑋 = 𝑌 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌))

Proof of Theorem trpredeq3
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 predeq3 5904 . . . . . 6 (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌))
2 rdgeq2 7747 . . . . . 6 (Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)))
31, 2syl 17 . . . . 5 (𝑋 = 𝑌 → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)))
43reseq1d 5603 . . . 4 (𝑋 = 𝑌 → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω))
54rneqd 5561 . . 3 (𝑋 = 𝑌 → ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω))
65unieqd 4647 . 2 (𝑋 = 𝑌 ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω))
7 df-trpred 32043 . 2 TrPred(𝑅, 𝐴, 𝑋) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
8 df-trpred 32043 . 2 TrPred(𝑅, 𝐴, 𝑌) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω)
96, 7, 83eqtr4g 2872 1 (𝑋 = 𝑌 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1637  Vcvv 3398   cuni 4637   ciun 4719  cmpt 4930  ran crn 5319  cres 5320  Predcpred 5899  ωcom 7298  reccrdg 7744  TrPredctrpred 32042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-br 4852  df-opab 4914  df-mpt 4931  df-xp 5324  df-cnv 5326  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-iota 6067  df-fv 6112  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-trpred 32043
This theorem is referenced by:  trpredeq3d  32050  dftrpred3g  32058
  Copyright terms: Public domain W3C validator