Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trpredeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
trpredeq3 | ⊢ (𝑋 = 𝑌 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 6195 | . . . . . 6 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
2 | rdgeq2 8214 | . . . . . 6 ⊢ (Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌) → rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑋 = 𝑌 → rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌))) |
4 | 3 | reseq1d 5879 | . . . 4 ⊢ (𝑋 = 𝑌 → (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω)) |
5 | 4 | rneqd 5836 | . . 3 ⊢ (𝑋 = 𝑌 → ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω)) |
6 | 5 | unieqd 4850 | . 2 ⊢ (𝑋 = 𝑌 → ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω)) |
7 | df-trpred 9396 | . 2 ⊢ TrPred(𝑅, 𝐴, 𝑋) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) | |
8 | df-trpred 9396 | . 2 ⊢ TrPred(𝑅, 𝐴, 𝑌) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑌)) ↾ ω) | |
9 | 6, 7, 8 | 3eqtr4g 2804 | 1 ⊢ (𝑋 = 𝑌 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3422 ∪ cuni 4836 ∪ ciun 4921 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 Predcpred 6190 ωcom 7687 reccrdg 8211 TrPredctrpred 9395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-trpred 9396 |
This theorem is referenced by: trpredeq3d 9403 dftrpred3g 9412 |
Copyright terms: Public domain | W3C validator |