Detailed syntax breakdown of Definition df-wlim
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cR |
. . 3
class 𝑅 |
3 | 1, 2 | cwlim 33805 |
. 2
class
WLim(𝑅, 𝐴) |
4 | | vx |
. . . . . 6
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . 5
class 𝑥 |
6 | 1, 1, 2 | cinf 9200 |
. . . . 5
class inf(𝐴, 𝐴, 𝑅) |
7 | 5, 6 | wne 2943 |
. . . 4
wff 𝑥 ≠ inf(𝐴, 𝐴, 𝑅) |
8 | 1, 2, 5 | cpred 6201 |
. . . . . 6
class
Pred(𝑅, 𝐴, 𝑥) |
9 | 8, 1, 2 | csup 9199 |
. . . . 5
class
sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) |
10 | 5, 9 | wceq 1539 |
. . . 4
wff 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) |
11 | 7, 10 | wa 396 |
. . 3
wff (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) |
12 | 11, 4, 1 | crab 3068 |
. 2
class {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} |
13 | 3, 12 | wceq 1539 |
1
wff WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} |