Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimss | Structured version Visualization version GIF version |
Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.) |
Ref | Expression |
---|---|
wlimss | ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlim 33734 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
2 | 1 | ssrab3 4011 | 1 ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ≠ wne 2942 ⊆ wss 3883 Predcpred 6190 supcsup 9129 infcinf 9130 WLimcwlim 33732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-wlim 33734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |