| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimss | Structured version Visualization version GIF version | ||
| Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.) |
| Ref | Expression |
|---|---|
| wlimss | ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlim 35846 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
| 2 | 1 | ssrab3 4032 | 1 ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ≠ wne 2928 ⊆ wss 3902 Predcpred 6247 supcsup 9324 infcinf 9325 WLimcwlim 35844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3919 df-wlim 35846 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |