Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimss Structured version   Visualization version   GIF version

Theorem wlimss 35425
Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.)
Assertion
Ref Expression
wlimss WLim(𝑅, 𝐴) ⊆ 𝐴

Proof of Theorem wlimss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-wlim 35409 . 2 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
21ssrab3 4078 1 WLim(𝑅, 𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wne 2937  wss 3947  Predcpred 6304  supcsup 9464  infcinf 9465  WLimcwlim 35407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-in 3954  df-ss 3964  df-wlim 35409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator