| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimss | Structured version Visualization version GIF version | ||
| Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.) |
| Ref | Expression |
|---|---|
| wlimss | ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlim 35836 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
| 2 | 1 | ssrab3 4062 | 1 ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ≠ wne 2933 ⊆ wss 3931 Predcpred 6294 supcsup 9457 infcinf 9458 WLimcwlim 35834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-ss 3948 df-wlim 35836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |