Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimss Structured version   Visualization version   GIF version

Theorem wlimss 35862
Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.)
Assertion
Ref Expression
wlimss WLim(𝑅, 𝐴) ⊆ 𝐴

Proof of Theorem wlimss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-wlim 35846 . 2 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
21ssrab3 4032 1 WLim(𝑅, 𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wne 2928  wss 3902  Predcpred 6247  supcsup 9324  infcinf 9325  WLimcwlim 35844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3919  df-wlim 35846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator