![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wlimeq12 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
2 | simpl 482 | . . . . . 6 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝑅 = 𝑆) | |
3 | 1, 1, 2 | infeq123d 9550 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → inf(𝐴, 𝐴, 𝑅) = inf(𝐵, 𝐵, 𝑆)) |
4 | 3 | neeq2d 3007 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑥 ≠ inf(𝐵, 𝐵, 𝑆))) |
5 | equid 2011 | . . . . . . 7 ⊢ 𝑥 = 𝑥 | |
6 | predeq123 6333 | . . . . . . 7 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑥 = 𝑥) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥)) | |
7 | 5, 6 | mp3an3 1450 | . . . . . 6 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥)) |
8 | 7, 1, 2 | supeq123d 9519 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)) |
9 | 8 | eqeq2d 2751 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))) |
10 | 4, 9 | anbi12d 631 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)))) |
11 | 1, 10 | rabeqbidv 3462 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} = {𝑥 ∈ 𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))}) |
12 | df-wlim 35777 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
13 | df-wlim 35777 | . 2 ⊢ WLim(𝑆, 𝐵) = {𝑥 ∈ 𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))} | |
14 | 11, 12, 13 | 3eqtr4g 2805 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2946 {crab 3443 Predcpred 6331 supcsup 9509 infcinf 9510 WLimcwlim 35775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-sup 9511 df-inf 9512 df-wlim 35777 |
This theorem is referenced by: wlimeq1 35784 wlimeq2 35785 |
Copyright terms: Public domain | W3C validator |