Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wlimeq12 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
2 | simpl 483 | . . . . . 6 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝑅 = 𝑆) | |
3 | 1, 1, 2 | infeq123d 9240 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → inf(𝐴, 𝐴, 𝑅) = inf(𝐵, 𝐵, 𝑆)) |
4 | 3 | neeq2d 3004 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑥 ≠ inf(𝐵, 𝐵, 𝑆))) |
5 | equid 2015 | . . . . . . 7 ⊢ 𝑥 = 𝑥 | |
6 | predeq123 6203 | . . . . . . 7 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑥 = 𝑥) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥)) | |
7 | 5, 6 | mp3an3 1449 | . . . . . 6 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥)) |
8 | 7, 1, 2 | supeq123d 9209 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)) |
9 | 8 | eqeq2d 2749 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))) |
10 | 4, 9 | anbi12d 631 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)))) |
11 | 1, 10 | rabeqbidv 3420 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} = {𝑥 ∈ 𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))}) |
12 | df-wlim 33807 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
13 | df-wlim 33807 | . 2 ⊢ WLim(𝑆, 𝐵) = {𝑥 ∈ 𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))} | |
14 | 11, 12, 13 | 3eqtr4g 2803 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 {crab 3068 Predcpred 6201 supcsup 9199 infcinf 9200 WLimcwlim 33805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-sup 9201 df-inf 9202 df-wlim 33807 |
This theorem is referenced by: wlimeq1 33814 wlimeq2 33815 |
Copyright terms: Public domain | W3C validator |