|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| wlimeq12 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 2 | simpl 482 | . . . . . 6 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝑅 = 𝑆) | |
| 3 | 1, 1, 2 | infeq123d 9522 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → inf(𝐴, 𝐴, 𝑅) = inf(𝐵, 𝐵, 𝑆)) | 
| 4 | 3 | neeq2d 3000 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑥 ≠ inf(𝐵, 𝐵, 𝑆))) | 
| 5 | equid 2010 | . . . . . . 7 ⊢ 𝑥 = 𝑥 | |
| 6 | predeq123 6321 | . . . . . . 7 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑥 = 𝑥) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥)) | |
| 7 | 5, 6 | mp3an3 1451 | . . . . . 6 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥)) | 
| 8 | 7, 1, 2 | supeq123d 9491 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)) | 
| 9 | 8 | eqeq2d 2747 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))) | 
| 10 | 4, 9 | anbi12d 632 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)))) | 
| 11 | 1, 10 | rabeqbidv 3454 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} = {𝑥 ∈ 𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))}) | 
| 12 | df-wlim 35815 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
| 13 | df-wlim 35815 | . 2 ⊢ WLim(𝑆, 𝐵) = {𝑥 ∈ 𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))} | |
| 14 | 11, 12, 13 | 3eqtr4g 2801 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ≠ wne 2939 {crab 3435 Predcpred 6319 supcsup 9481 infcinf 9482 WLimcwlim 35813 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-sup 9483 df-inf 9484 df-wlim 35815 | 
| This theorem is referenced by: wlimeq1 35822 wlimeq2 35823 | 
| Copyright terms: Public domain | W3C validator |