Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimeq12 Structured version   Visualization version   GIF version

Theorem wlimeq12 34779
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wlimeq12 ((𝑅 = 𝑆𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵))

Proof of Theorem wlimeq12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵) → 𝐴 = 𝐵)
2 simpl 483 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵) → 𝑅 = 𝑆)
31, 1, 2infeq123d 9472 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵) → inf(𝐴, 𝐴, 𝑅) = inf(𝐵, 𝐵, 𝑆))
43neeq2d 3001 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑥 ≠ inf(𝐵, 𝐵, 𝑆)))
5 equid 2015 . . . . . . 7 𝑥 = 𝑥
6 predeq123 6298 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝑥 = 𝑥) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥))
75, 6mp3an3 1450 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥))
87, 1, 2supeq123d 9441 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵) → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))
98eqeq2d 2743 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)))
104, 9anbi12d 631 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))))
111, 10rabeqbidv 3449 . 2 ((𝑅 = 𝑆𝐴 = 𝐵) → {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} = {𝑥𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))})
12 df-wlim 34773 . 2 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
13 df-wlim 34773 . 2 WLim(𝑆, 𝐵) = {𝑥𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))}
1411, 12, 133eqtr4g 2797 1 ((𝑅 = 𝑆𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wne 2940  {crab 3432  Predcpred 6296  supcsup 9431  infcinf 9432  WLimcwlim 34771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-sup 9433  df-inf 9434  df-wlim 34773
This theorem is referenced by:  wlimeq1  34780  wlimeq2  34781
  Copyright terms: Public domain W3C validator