Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elwlim Structured version   Visualization version   GIF version

Theorem elwlim 35818
Description: Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
elwlim (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))

Proof of Theorem elwlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2988 . . . 4 (𝑥 = 𝑋 → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅)))
2 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
3 predeq3 6281 . . . . . 6 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
43supeq1d 9404 . . . . 5 (𝑥 = 𝑋 → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
52, 4eqeq12d 2746 . . . 4 (𝑥 = 𝑋 → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
61, 5anbi12d 632 . . 3 (𝑥 = 𝑋 → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
7 df-wlim 35808 . . 3 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
86, 7elrab2 3665 . 2 (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
9 3anass 1094 . 2 ((𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) ↔ (𝑋𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
108, 9bitr4i 278 1 (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Predcpred 6276  supcsup 9398  infcinf 9399  WLimcwlim 35806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-sup 9400  df-wlim 35808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator