![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elwlim | Structured version Visualization version GIF version |
Description: Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
elwlim | ⊢ (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3046 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅))) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
3 | predeq3 6027 | . . . . . 6 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
4 | 3 | supeq1d 8756 | . . . . 5 ⊢ (𝑥 = 𝑋 → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
5 | 2, 4 | eqeq12d 2810 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) |
6 | 1, 5 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))) |
7 | df-wlim 32709 | . . 3 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
8 | 6, 7 | elrab2 3621 | . 2 ⊢ (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))) |
9 | 3anass 1088 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) ↔ (𝑋 ∈ 𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))) | |
10 | 8, 9 | bitr4i 279 | 1 ⊢ (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 Predcpred 6022 supcsup 8750 infcinf 8751 WLimcwlim 32707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-xp 5449 df-cnv 5451 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-sup 8752 df-wlim 32709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |