Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elwlim Structured version   Visualization version   GIF version

Theorem elwlim 35328
Description: Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
elwlim (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))

Proof of Theorem elwlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2997 . . . 4 (𝑥 = 𝑋 → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅)))
2 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
3 predeq3 6297 . . . . . 6 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
43supeq1d 9440 . . . . 5 (𝑥 = 𝑋 → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
52, 4eqeq12d 2742 . . . 4 (𝑥 = 𝑋 → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
61, 5anbi12d 630 . . 3 (𝑥 = 𝑋 → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
7 df-wlim 35318 . . 3 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
86, 7elrab2 3681 . 2 (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
9 3anass 1092 . 2 ((𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) ↔ (𝑋𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
108, 9bitr4i 278 1 (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  Predcpred 6292  supcsup 9434  infcinf 9435  WLimcwlim 35316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-sup 9436  df-wlim 35318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator