| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-wsuc | Structured version Visualization version GIF version | ||
| Description: Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| df-wsuc | ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | cX | . . 3 class 𝑋 | |
| 4 | 1, 2, 3 | cwsuc 35811 | . 2 class wsuc(𝑅, 𝐴, 𝑋) |
| 5 | 2 | ccnv 5684 | . . . 4 class ◡𝑅 |
| 6 | 1, 5, 3 | cpred 6320 | . . 3 class Pred(◡𝑅, 𝐴, 𝑋) |
| 7 | 6, 1, 2 | cinf 9481 | . 2 class inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
| 8 | 4, 7 | wceq 1540 | 1 wff wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
| Colors of variables: wff setvar class |
| This definition is referenced by: wsuceq123 35815 nfwsuc 35819 wsucex 35827 wsuccl 35828 wsuclb 35829 |
| Copyright terms: Public domain | W3C validator |