| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfwlim | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfwlim.1 | ⊢ Ⅎ𝑥𝑅 |
| nfwlim.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfwlim | ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlim 35836 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} | |
| 2 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfwlim.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfwlim.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 3, 3, 4 | nfinf 9500 | . . . . 5 ⊢ Ⅎ𝑥inf(𝐴, 𝐴, 𝑅) |
| 6 | 2, 5 | nfne 3034 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅) |
| 7 | 4, 3, 2 | nfpred 6300 | . . . . . 6 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑦) |
| 8 | 7, 3, 4 | nfsup 9468 | . . . . 5 ⊢ Ⅎ𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
| 9 | 8 | nfeq2 2917 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
| 10 | 6, 9 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)) |
| 11 | 10, 3 | nfrabw 3459 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} |
| 12 | 1, 11 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 Ⅎwnfc 2884 ≠ wne 2933 {crab 3420 Predcpred 6294 supcsup 9457 infcinf 9458 WLimcwlim 35834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-sup 9459 df-inf 9460 df-wlim 35836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |