Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfwlim | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
nfwlim.1 | ⊢ Ⅎ𝑥𝑅 |
nfwlim.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfwlim | ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlim 33807 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} | |
2 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfwlim.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | nfwlim.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
5 | 3, 3, 4 | nfinf 9241 | . . . . 5 ⊢ Ⅎ𝑥inf(𝐴, 𝐴, 𝑅) |
6 | 2, 5 | nfne 3045 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅) |
7 | 4, 3, 2 | nfpred 6207 | . . . . . 6 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑦) |
8 | 7, 3, 4 | nfsup 9210 | . . . . 5 ⊢ Ⅎ𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
9 | 8 | nfeq2 2924 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
10 | 6, 9 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)) |
11 | 10, 3 | nfrabw 3318 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} |
12 | 1, 11 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 Ⅎwnfc 2887 ≠ wne 2943 {crab 3068 Predcpred 6201 supcsup 9199 infcinf 9200 WLimcwlim 33805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-sup 9201 df-inf 9202 df-wlim 33807 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |