|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfwlim | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| nfwlim.1 | ⊢ Ⅎ𝑥𝑅 | 
| nfwlim.2 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| nfwlim | ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-wlim 35814 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} | |
| 2 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfwlim.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfwlim.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 3, 3, 4 | nfinf 9522 | . . . . 5 ⊢ Ⅎ𝑥inf(𝐴, 𝐴, 𝑅) | 
| 6 | 2, 5 | nfne 3043 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅) | 
| 7 | 4, 3, 2 | nfpred 6326 | . . . . . 6 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑦) | 
| 8 | 7, 3, 4 | nfsup 9491 | . . . . 5 ⊢ Ⅎ𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) | 
| 9 | 8 | nfeq2 2923 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) | 
| 10 | 6, 9 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)) | 
| 11 | 10, 3 | nfrabw 3475 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} | 
| 12 | 1, 11 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1540 Ⅎwnfc 2890 ≠ wne 2940 {crab 3436 Predcpred 6320 supcsup 9480 infcinf 9481 WLimcwlim 35812 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-sup 9482 df-inf 9483 df-wlim 35814 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |