![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfwlim | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
nfwlim.1 | ⊢ Ⅎ𝑥𝑅 |
nfwlim.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfwlim | ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlim 34785 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} | |
2 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfwlim.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | nfwlim.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
5 | 3, 3, 4 | nfinf 9477 | . . . . 5 ⊢ Ⅎ𝑥inf(𝐴, 𝐴, 𝑅) |
6 | 2, 5 | nfne 3044 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅) |
7 | 4, 3, 2 | nfpred 6306 | . . . . . 6 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑦) |
8 | 7, 3, 4 | nfsup 9446 | . . . . 5 ⊢ Ⅎ𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
9 | 8 | nfeq2 2921 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
10 | 6, 9 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)) |
11 | 10, 3 | nfrabw 3469 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} |
12 | 1, 11 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 Ⅎwnfc 2884 ≠ wne 2941 {crab 3433 Predcpred 6300 supcsup 9435 infcinf 9436 WLimcwlim 34783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-sup 9437 df-inf 9438 df-wlim 34785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |