![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfwlim | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
nfwlim.1 | ⊢ Ⅎ𝑥𝑅 |
nfwlim.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfwlim | ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlim 32658 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} | |
2 | nfcv 2925 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfwlim.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | nfwlim.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
5 | 3, 3, 4 | nfinf 8739 | . . . . 5 ⊢ Ⅎ𝑥inf(𝐴, 𝐴, 𝑅) |
6 | 2, 5 | nfne 3063 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅) |
7 | 4, 3, 2 | nfpred 5988 | . . . . . 6 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑦) |
8 | 7, 3, 4 | nfsup 8708 | . . . . 5 ⊢ Ⅎ𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
9 | 8 | nfeq2 2940 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
10 | 6, 9 | nfan 1863 | . . 3 ⊢ Ⅎ𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)) |
11 | 10, 3 | nfrab 3318 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} |
12 | 1, 11 | nfcxfr 2923 | 1 ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1508 Ⅎwnfc 2909 ≠ wne 2960 {crab 3085 Predcpred 5982 supcsup 8697 infcinf 8698 WLimcwlim 32656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-xp 5409 df-cnv 5411 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-sup 8699 df-inf 8700 df-wlim 32658 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |