| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfwlim | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfwlim.1 | ⊢ Ⅎ𝑥𝑅 |
| nfwlim.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfwlim | ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlim 35855 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfwlim.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfwlim.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 3, 3, 4 | nfinf 9367 | . . . . 5 ⊢ Ⅎ𝑥inf(𝐴, 𝐴, 𝑅) |
| 6 | 2, 5 | nfne 3029 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅) |
| 7 | 4, 3, 2 | nfpred 6253 | . . . . . 6 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑦) |
| 8 | 7, 3, 4 | nfsup 9335 | . . . . 5 ⊢ Ⅎ𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
| 9 | 8 | nfeq2 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅) |
| 10 | 6, 9 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)) |
| 11 | 10, 3 | nfrabw 3432 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))} |
| 12 | 1, 11 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 Ⅎwnfc 2879 ≠ wne 2928 {crab 3395 Predcpred 6247 supcsup 9324 infcinf 9325 WLimcwlim 35853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-sup 9326 df-inf 9327 df-wlim 35855 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |