Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfwlim Structured version   Visualization version   GIF version

Theorem nfwlim 33813
Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
nfwlim.1 𝑥𝑅
nfwlim.2 𝑥𝐴
Assertion
Ref Expression
nfwlim 𝑥WLim(𝑅, 𝐴)

Proof of Theorem nfwlim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-wlim 33804 . 2 WLim(𝑅, 𝐴) = {𝑦𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))}
2 nfcv 2907 . . . . 5 𝑥𝑦
3 nfwlim.2 . . . . . 6 𝑥𝐴
4 nfwlim.1 . . . . . 6 𝑥𝑅
53, 3, 4nfinf 9239 . . . . 5 𝑥inf(𝐴, 𝐴, 𝑅)
62, 5nfne 3045 . . . 4 𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅)
74, 3, 2nfpred 6209 . . . . . 6 𝑥Pred(𝑅, 𝐴, 𝑦)
87, 3, 4nfsup 9208 . . . . 5 𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)
98nfeq2 2924 . . . 4 𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)
106, 9nfan 1902 . . 3 𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))
1110, 3nfrabw 3317 . 2 𝑥{𝑦𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))}
121, 11nfcxfr 2905 1 𝑥WLim(𝑅, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wnfc 2887  wne 2943  {crab 3068  Predcpred 6203  supcsup 9197  infcinf 9198  WLimcwlim 33802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pr 5354
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5077  df-opab 5139  df-xp 5597  df-cnv 5599  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-sup 9199  df-inf 9200  df-wlim 33804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator