Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfwlim Structured version   Visualization version   GIF version

Theorem nfwlim 33743
Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
nfwlim.1 𝑥𝑅
nfwlim.2 𝑥𝐴
Assertion
Ref Expression
nfwlim 𝑥WLim(𝑅, 𝐴)

Proof of Theorem nfwlim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-wlim 33734 . 2 WLim(𝑅, 𝐴) = {𝑦𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))}
2 nfcv 2906 . . . . 5 𝑥𝑦
3 nfwlim.2 . . . . . 6 𝑥𝐴
4 nfwlim.1 . . . . . 6 𝑥𝑅
53, 3, 4nfinf 9171 . . . . 5 𝑥inf(𝐴, 𝐴, 𝑅)
62, 5nfne 3044 . . . 4 𝑥 𝑦 ≠ inf(𝐴, 𝐴, 𝑅)
74, 3, 2nfpred 6196 . . . . . 6 𝑥Pred(𝑅, 𝐴, 𝑦)
87, 3, 4nfsup 9140 . . . . 5 𝑥sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)
98nfeq2 2923 . . . 4 𝑥 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅)
106, 9nfan 1903 . . 3 𝑥(𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))
1110, 3nfrabw 3311 . 2 𝑥{𝑦𝐴 ∣ (𝑦 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑦 = sup(Pred(𝑅, 𝐴, 𝑦), 𝐴, 𝑅))}
121, 11nfcxfr 2904 1 𝑥WLim(𝑅, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wnfc 2886  wne 2942  {crab 3067  Predcpred 6190  supcsup 9129  infcinf 9130  WLimcwlim 33732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-sup 9131  df-inf 9132  df-wlim 33734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator