Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq123 Structured version   Visualization version   GIF version

Theorem wsuceq123 34781
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wsuceq123 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))

Proof of Theorem wsuceq123
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
21cnveqd 5875 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
3 predeq123 6301 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
42, 3syld3an1 1410 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
5 simp2 1137 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝐴 = 𝐵)
64, 5, 1infeq123d 9475 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆))
7 df-wsuc 34779 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
8 df-wsuc 34779 . 2 wsuc(𝑆, 𝐵, 𝑌) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆)
96, 7, 83eqtr4g 2797 1 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  ccnv 5675  Predcpred 6299  infcinf 9435  wsuccwsuc 34777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-sup 9436  df-inf 9437  df-wsuc 34779
This theorem is referenced by:  wsuceq1  34782  wsuceq2  34783  wsuceq3  34784
  Copyright terms: Public domain W3C validator