| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuceq123 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wsuceq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝑅 = 𝑆) | |
| 2 | 1 | cnveqd 5839 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → ◡𝑅 = ◡𝑆) |
| 3 | predeq123 6275 | . . . 4 ⊢ ((◡𝑅 = ◡𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(◡𝑅, 𝐴, 𝑋) = Pred(◡𝑆, 𝐵, 𝑌)) | |
| 4 | 2, 3 | syld3an1 1412 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(◡𝑅, 𝐴, 𝑋) = Pred(◡𝑆, 𝐵, 𝑌)) |
| 5 | simp2 1137 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝐴 = 𝐵) | |
| 6 | 4, 5, 1 | infeq123d 9433 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) = inf(Pred(◡𝑆, 𝐵, 𝑌), 𝐵, 𝑆)) |
| 7 | df-wsuc 35800 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
| 8 | df-wsuc 35800 | . 2 ⊢ wsuc(𝑆, 𝐵, 𝑌) = inf(Pred(◡𝑆, 𝐵, 𝑌), 𝐵, 𝑆) | |
| 9 | 6, 7, 8 | 3eqtr4g 2789 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ◡ccnv 5637 Predcpred 6273 infcinf 9392 wsuccwsuc 35798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-sup 9393 df-inf 9394 df-wsuc 35800 |
| This theorem is referenced by: wsuceq1 35803 wsuceq2 35804 wsuceq3 35805 |
| Copyright terms: Public domain | W3C validator |