Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuceq123 | Structured version Visualization version GIF version |
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wsuceq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝑅 = 𝑆) | |
2 | 1 | cnveqd 5784 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → ◡𝑅 = ◡𝑆) |
3 | predeq123 6203 | . . . 4 ⊢ ((◡𝑅 = ◡𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(◡𝑅, 𝐴, 𝑋) = Pred(◡𝑆, 𝐵, 𝑌)) | |
4 | 2, 3 | syld3an1 1409 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(◡𝑅, 𝐴, 𝑋) = Pred(◡𝑆, 𝐵, 𝑌)) |
5 | simp2 1136 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝐴 = 𝐵) | |
6 | 4, 5, 1 | infeq123d 9240 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) = inf(Pred(◡𝑆, 𝐵, 𝑌), 𝐵, 𝑆)) |
7 | df-wsuc 33806 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
8 | df-wsuc 33806 | . 2 ⊢ wsuc(𝑆, 𝐵, 𝑌) = inf(Pred(◡𝑆, 𝐵, 𝑌), 𝐵, 𝑆) | |
9 | 6, 7, 8 | 3eqtr4g 2803 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ◡ccnv 5588 Predcpred 6201 infcinf 9200 wsuccwsuc 33804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-sup 9201 df-inf 9202 df-wsuc 33806 |
This theorem is referenced by: wsuceq1 33809 wsuceq2 33810 wsuceq3 33811 |
Copyright terms: Public domain | W3C validator |