Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq123 Structured version   Visualization version   GIF version

Theorem wsuceq123 34428
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wsuceq123 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))

Proof of Theorem wsuceq123
StepHypRef Expression
1 simp1 1137 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
21cnveqd 5836 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
3 predeq123 6259 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
42, 3syld3an1 1411 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
5 simp2 1138 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝐴 = 𝐵)
64, 5, 1infeq123d 9424 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆))
7 df-wsuc 34426 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
8 df-wsuc 34426 . 2 wsuc(𝑆, 𝐵, 𝑌) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆)
96, 7, 83eqtr4g 2802 1 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  ccnv 5637  Predcpred 6257  infcinf 9384  wsuccwsuc 34424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-sup 9385  df-inf 9386  df-wsuc 34426
This theorem is referenced by:  wsuceq1  34429  wsuceq2  34430  wsuceq3  34431
  Copyright terms: Public domain W3C validator