Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq123 Structured version   Visualization version   GIF version

Theorem wsuceq123 35795
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wsuceq123 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))

Proof of Theorem wsuceq123
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
21cnveqd 5829 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
3 predeq123 6263 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
42, 3syld3an1 1412 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
5 simp2 1137 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝐴 = 𝐵)
64, 5, 1infeq123d 9409 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆))
7 df-wsuc 35793 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
8 df-wsuc 35793 . 2 wsuc(𝑆, 𝐵, 𝑌) = inf(Pred(𝑆, 𝐵, 𝑌), 𝐵, 𝑆)
96, 7, 83eqtr4g 2789 1 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  ccnv 5630  Predcpred 6261  infcinf 9368  wsuccwsuc 35791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-sup 9369  df-inf 9370  df-wsuc 35793
This theorem is referenced by:  wsuceq1  35796  wsuceq2  35797  wsuceq3  35798
  Copyright terms: Public domain W3C validator