![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuceq123 | Structured version Visualization version GIF version |
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wsuceq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝑅 = 𝑆) | |
2 | 1 | cnveqd 5836 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → ◡𝑅 = ◡𝑆) |
3 | predeq123 6259 | . . . 4 ⊢ ((◡𝑅 = ◡𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(◡𝑅, 𝐴, 𝑋) = Pred(◡𝑆, 𝐵, 𝑌)) | |
4 | 2, 3 | syld3an1 1411 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(◡𝑅, 𝐴, 𝑋) = Pred(◡𝑆, 𝐵, 𝑌)) |
5 | simp2 1138 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝐴 = 𝐵) | |
6 | 4, 5, 1 | infeq123d 9424 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) = inf(Pred(◡𝑆, 𝐵, 𝑌), 𝐵, 𝑆)) |
7 | df-wsuc 34426 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
8 | df-wsuc 34426 | . 2 ⊢ wsuc(𝑆, 𝐵, 𝑌) = inf(Pred(◡𝑆, 𝐵, 𝑌), 𝐵, 𝑆) | |
9 | 6, 7, 8 | 3eqtr4g 2802 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ◡ccnv 5637 Predcpred 6257 infcinf 9384 wsuccwsuc 34424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-sup 9385 df-inf 9386 df-wsuc 34426 |
This theorem is referenced by: wsuceq1 34429 wsuceq2 34430 wsuceq3 34431 |
Copyright terms: Public domain | W3C validator |