Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuclb | Structured version Visualization version GIF version |
Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wsuclb.1 | ⊢ (𝜑 → 𝑅 We 𝐴) |
wsuclb.2 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
wsuclb.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
wsuclb.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
wsuclb.5 | ⊢ (𝜑 → 𝑋𝑅𝑌) |
Ref | Expression |
---|---|
wsuclb | ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wsuclb.5 | . . . . 5 ⊢ (𝜑 → 𝑋𝑅𝑌) | |
2 | wsuclb.4 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
3 | wsuclb.3 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | brcnvg 5720 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝑉) → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) | |
5 | 2, 3, 4 | syl2anc 588 | . . . . 5 ⊢ (𝜑 → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) |
6 | 1, 5 | mpbird 260 | . . . 4 ⊢ (𝜑 → 𝑌◡𝑅𝑋) |
7 | elpredg 6141 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) | |
8 | 3, 2, 7 | syl2anc 588 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) |
9 | 6, 8 | mpbird 260 | . . 3 ⊢ (𝜑 → 𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋)) |
10 | wsuclb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
11 | weso 5516 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) |
13 | wsuclb.2 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
14 | breq2 5037 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
15 | 14 | rspcev 3542 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋𝑅𝑌) → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
16 | 2, 1, 15 | syl2anc 588 | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
17 | 10, 13, 3, 16 | wsuclem 33374 | . . . 4 ⊢ (𝜑 → ∃𝑎 ∈ 𝐴 (∀𝑏 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑐𝑅𝑏))) |
18 | 12, 17 | inflb 8987 | . . 3 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) |
19 | 9, 18 | mpd 15 | . 2 ⊢ (𝜑 → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
20 | df-wsuc 33361 | . . 3 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
21 | 20 | breq2i 5041 | . 2 ⊢ (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
22 | 19, 21 | sylnibr 333 | 1 ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∈ wcel 2112 ∃wrex 3072 class class class wbr 5033 Or wor 5443 Se wse 5482 We wwe 5483 ◡ccnv 5524 Predcpred 6126 infcinf 8939 wsuccwsuc 33359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-iota 6295 df-riota 7109 df-sup 8940 df-inf 8941 df-wsuc 33361 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |