Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuclb Structured version   Visualization version   GIF version

Theorem wsuclb 33822
Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
wsuclb.1 (𝜑𝑅 We 𝐴)
wsuclb.2 (𝜑𝑅 Se 𝐴)
wsuclb.3 (𝜑𝑋𝑉)
wsuclb.4 (𝜑𝑌𝐴)
wsuclb.5 (𝜑𝑋𝑅𝑌)
Assertion
Ref Expression
wsuclb (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))

Proof of Theorem wsuclb
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wsuclb.5 . . . . 5 (𝜑𝑋𝑅𝑌)
2 wsuclb.4 . . . . . 6 (𝜑𝑌𝐴)
3 wsuclb.3 . . . . . 6 (𝜑𝑋𝑉)
4 brcnvg 5788 . . . . . 6 ((𝑌𝐴𝑋𝑉) → (𝑌𝑅𝑋𝑋𝑅𝑌))
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝑌𝑅𝑋𝑋𝑅𝑌))
61, 5mpbird 256 . . . 4 (𝜑𝑌𝑅𝑋)
7 elpredg 6216 . . . . 5 ((𝑋𝑉𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
83, 2, 7syl2anc 584 . . . 4 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
96, 8mpbird 256 . . 3 (𝜑𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
10 wsuclb.1 . . . . 5 (𝜑𝑅 We 𝐴)
11 weso 5580 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
1210, 11syl 17 . . . 4 (𝜑𝑅 Or 𝐴)
13 wsuclb.2 . . . . 5 (𝜑𝑅 Se 𝐴)
14 breq2 5078 . . . . . . 7 (𝑦 = 𝑌 → (𝑋𝑅𝑦𝑋𝑅𝑌))
1514rspcev 3561 . . . . . 6 ((𝑌𝐴𝑋𝑅𝑌) → ∃𝑦𝐴 𝑋𝑅𝑦)
162, 1, 15syl2anc 584 . . . . 5 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
1710, 13, 3, 16wsuclem 33819 . . . 4 (𝜑 → ∃𝑎𝐴 (∀𝑏 ∈ Pred (𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (𝑅, 𝐴, 𝑋)𝑐𝑅𝑏)))
1812, 17inflb 9248 . . 3 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
199, 18mpd 15 . 2 (𝜑 → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
20 df-wsuc 33806 . . 3 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2120breq2i 5082 . 2 (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
2219, 21sylnibr 329 1 (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2106  wrex 3065   class class class wbr 5074   Or wor 5502   Se wse 5542   We wwe 5543  ccnv 5588  Predcpred 6201  infcinf 9200  wsuccwsuc 33804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-riota 7232  df-sup 9201  df-inf 9202  df-wsuc 33806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator