| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuclb | Structured version Visualization version GIF version | ||
| Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wsuclb.1 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| wsuclb.2 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| wsuclb.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| wsuclb.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| wsuclb.5 | ⊢ (𝜑 → 𝑋𝑅𝑌) |
| Ref | Expression |
|---|---|
| wsuclb | ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wsuclb.5 | . . . . 5 ⊢ (𝜑 → 𝑋𝑅𝑌) | |
| 2 | wsuclb.4 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 3 | wsuclb.3 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | brcnvg 5846 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝑉) → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) |
| 6 | 1, 5 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝑌◡𝑅𝑋) |
| 7 | elpredg 6291 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) | |
| 8 | 3, 2, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) |
| 9 | 6, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋)) |
| 10 | wsuclb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 11 | weso 5632 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) |
| 13 | wsuclb.2 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 14 | breq2 5114 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
| 15 | 14 | rspcev 3591 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋𝑅𝑌) → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
| 16 | 2, 1, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
| 17 | 10, 13, 3, 16 | wsuclem 35820 | . . . 4 ⊢ (𝜑 → ∃𝑎 ∈ 𝐴 (∀𝑏 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑐𝑅𝑏))) |
| 18 | 12, 17 | inflb 9448 | . . 3 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) |
| 19 | 9, 18 | mpd 15 | . 2 ⊢ (𝜑 → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
| 20 | df-wsuc 35807 | . . 3 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
| 21 | 20 | breq2i 5118 | . 2 ⊢ (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
| 22 | 19, 21 | sylnibr 329 | 1 ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 Or wor 5548 Se wse 5592 We wwe 5593 ◡ccnv 5640 Predcpred 6276 infcinf 9399 wsuccwsuc 35805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-riota 7347 df-sup 9400 df-inf 9401 df-wsuc 35807 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |