Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuclb Structured version   Visualization version   GIF version

Theorem wsuclb 35816
Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
wsuclb.1 (𝜑𝑅 We 𝐴)
wsuclb.2 (𝜑𝑅 Se 𝐴)
wsuclb.3 (𝜑𝑋𝑉)
wsuclb.4 (𝜑𝑌𝐴)
wsuclb.5 (𝜑𝑋𝑅𝑌)
Assertion
Ref Expression
wsuclb (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))

Proof of Theorem wsuclb
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wsuclb.5 . . . . 5 (𝜑𝑋𝑅𝑌)
2 wsuclb.4 . . . . . 6 (𝜑𝑌𝐴)
3 wsuclb.3 . . . . . 6 (𝜑𝑋𝑉)
4 brcnvg 5843 . . . . . 6 ((𝑌𝐴𝑋𝑉) → (𝑌𝑅𝑋𝑋𝑅𝑌))
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝑌𝑅𝑋𝑋𝑅𝑌))
61, 5mpbird 257 . . . 4 (𝜑𝑌𝑅𝑋)
7 elpredg 6288 . . . . 5 ((𝑋𝑉𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
83, 2, 7syl2anc 584 . . . 4 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
96, 8mpbird 257 . . 3 (𝜑𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
10 wsuclb.1 . . . . 5 (𝜑𝑅 We 𝐴)
11 weso 5629 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
1210, 11syl 17 . . . 4 (𝜑𝑅 Or 𝐴)
13 wsuclb.2 . . . . 5 (𝜑𝑅 Se 𝐴)
14 breq2 5111 . . . . . . 7 (𝑦 = 𝑌 → (𝑋𝑅𝑦𝑋𝑅𝑌))
1514rspcev 3588 . . . . . 6 ((𝑌𝐴𝑋𝑅𝑌) → ∃𝑦𝐴 𝑋𝑅𝑦)
162, 1, 15syl2anc 584 . . . . 5 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
1710, 13, 3, 16wsuclem 35813 . . . 4 (𝜑 → ∃𝑎𝐴 (∀𝑏 ∈ Pred (𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (𝑅, 𝐴, 𝑋)𝑐𝑅𝑏)))
1812, 17inflb 9441 . . 3 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
199, 18mpd 15 . 2 (𝜑 → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
20 df-wsuc 35800 . . 3 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2120breq2i 5115 . 2 (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
2219, 21sylnibr 329 1 (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109  wrex 3053   class class class wbr 5107   Or wor 5545   Se wse 5589   We wwe 5590  ccnv 5637  Predcpred 6273  infcinf 9392  wsuccwsuc 35798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-riota 7344  df-sup 9393  df-inf 9394  df-wsuc 35800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator