Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuclb Structured version   Visualization version   GIF version

Theorem wsuclb 35823
Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
wsuclb.1 (𝜑𝑅 We 𝐴)
wsuclb.2 (𝜑𝑅 Se 𝐴)
wsuclb.3 (𝜑𝑋𝑉)
wsuclb.4 (𝜑𝑌𝐴)
wsuclb.5 (𝜑𝑋𝑅𝑌)
Assertion
Ref Expression
wsuclb (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))

Proof of Theorem wsuclb
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wsuclb.5 . . . . 5 (𝜑𝑋𝑅𝑌)
2 wsuclb.4 . . . . . 6 (𝜑𝑌𝐴)
3 wsuclb.3 . . . . . 6 (𝜑𝑋𝑉)
4 brcnvg 5846 . . . . . 6 ((𝑌𝐴𝑋𝑉) → (𝑌𝑅𝑋𝑋𝑅𝑌))
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝑌𝑅𝑋𝑋𝑅𝑌))
61, 5mpbird 257 . . . 4 (𝜑𝑌𝑅𝑋)
7 elpredg 6291 . . . . 5 ((𝑋𝑉𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
83, 2, 7syl2anc 584 . . . 4 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
96, 8mpbird 257 . . 3 (𝜑𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
10 wsuclb.1 . . . . 5 (𝜑𝑅 We 𝐴)
11 weso 5632 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
1210, 11syl 17 . . . 4 (𝜑𝑅 Or 𝐴)
13 wsuclb.2 . . . . 5 (𝜑𝑅 Se 𝐴)
14 breq2 5114 . . . . . . 7 (𝑦 = 𝑌 → (𝑋𝑅𝑦𝑋𝑅𝑌))
1514rspcev 3591 . . . . . 6 ((𝑌𝐴𝑋𝑅𝑌) → ∃𝑦𝐴 𝑋𝑅𝑦)
162, 1, 15syl2anc 584 . . . . 5 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
1710, 13, 3, 16wsuclem 35820 . . . 4 (𝜑 → ∃𝑎𝐴 (∀𝑏 ∈ Pred (𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (𝑅, 𝐴, 𝑋)𝑐𝑅𝑏)))
1812, 17inflb 9448 . . 3 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
199, 18mpd 15 . 2 (𝜑 → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
20 df-wsuc 35807 . . 3 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2120breq2i 5118 . 2 (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
2219, 21sylnibr 329 1 (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109  wrex 3054   class class class wbr 5110   Or wor 5548   Se wse 5592   We wwe 5593  ccnv 5640  Predcpred 6276  infcinf 9399  wsuccwsuc 35805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-riota 7347  df-sup 9400  df-inf 9401  df-wsuc 35807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator