| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuclb | Structured version Visualization version GIF version | ||
| Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wsuclb.1 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| wsuclb.2 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| wsuclb.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| wsuclb.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| wsuclb.5 | ⊢ (𝜑 → 𝑋𝑅𝑌) |
| Ref | Expression |
|---|---|
| wsuclb | ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wsuclb.5 | . . . . 5 ⊢ (𝜑 → 𝑋𝑅𝑌) | |
| 2 | wsuclb.4 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 3 | wsuclb.3 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | brcnvg 5818 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝑉) → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) |
| 6 | 1, 5 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝑌◡𝑅𝑋) |
| 7 | elpredg 6262 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) | |
| 8 | 3, 2, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) |
| 9 | 6, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋)) |
| 10 | wsuclb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 11 | weso 5605 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) |
| 13 | wsuclb.2 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 14 | breq2 5093 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
| 15 | 14 | rspcev 3572 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋𝑅𝑌) → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
| 16 | 2, 1, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
| 17 | 10, 13, 3, 16 | wsuclem 35867 | . . . 4 ⊢ (𝜑 → ∃𝑎 ∈ 𝐴 (∀𝑏 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑐𝑅𝑏))) |
| 18 | 12, 17 | inflb 9374 | . . 3 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) |
| 19 | 9, 18 | mpd 15 | . 2 ⊢ (𝜑 → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
| 20 | df-wsuc 35854 | . . 3 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
| 21 | 20 | breq2i 5097 | . 2 ⊢ (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
| 22 | 19, 21 | sylnibr 329 | 1 ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 Or wor 5521 Se wse 5565 We wwe 5566 ◡ccnv 5613 Predcpred 6247 infcinf 9325 wsuccwsuc 35852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-riota 7303 df-sup 9326 df-inf 9327 df-wsuc 35854 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |