Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuclb Structured version   Visualization version   GIF version

Theorem wsuclb 35829
Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
wsuclb.1 (𝜑𝑅 We 𝐴)
wsuclb.2 (𝜑𝑅 Se 𝐴)
wsuclb.3 (𝜑𝑋𝑉)
wsuclb.4 (𝜑𝑌𝐴)
wsuclb.5 (𝜑𝑋𝑅𝑌)
Assertion
Ref Expression
wsuclb (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))

Proof of Theorem wsuclb
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wsuclb.5 . . . . 5 (𝜑𝑋𝑅𝑌)
2 wsuclb.4 . . . . . 6 (𝜑𝑌𝐴)
3 wsuclb.3 . . . . . 6 (𝜑𝑋𝑉)
4 brcnvg 5890 . . . . . 6 ((𝑌𝐴𝑋𝑉) → (𝑌𝑅𝑋𝑋𝑅𝑌))
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝑌𝑅𝑋𝑋𝑅𝑌))
61, 5mpbird 257 . . . 4 (𝜑𝑌𝑅𝑋)
7 elpredg 6335 . . . . 5 ((𝑋𝑉𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
83, 2, 7syl2anc 584 . . . 4 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
96, 8mpbird 257 . . 3 (𝜑𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
10 wsuclb.1 . . . . 5 (𝜑𝑅 We 𝐴)
11 weso 5676 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
1210, 11syl 17 . . . 4 (𝜑𝑅 Or 𝐴)
13 wsuclb.2 . . . . 5 (𝜑𝑅 Se 𝐴)
14 breq2 5147 . . . . . . 7 (𝑦 = 𝑌 → (𝑋𝑅𝑦𝑋𝑅𝑌))
1514rspcev 3622 . . . . . 6 ((𝑌𝐴𝑋𝑅𝑌) → ∃𝑦𝐴 𝑋𝑅𝑦)
162, 1, 15syl2anc 584 . . . . 5 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
1710, 13, 3, 16wsuclem 35826 . . . 4 (𝜑 → ∃𝑎𝐴 (∀𝑏 ∈ Pred (𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (𝑅, 𝐴, 𝑋)𝑐𝑅𝑏)))
1812, 17inflb 9529 . . 3 (𝜑 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
199, 18mpd 15 . 2 (𝜑 → ¬ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
20 df-wsuc 35813 . . 3 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2120breq2i 5151 . 2 (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
2219, 21sylnibr 329 1 (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2108  wrex 3070   class class class wbr 5143   Or wor 5591   Se wse 5635   We wwe 5636  ccnv 5684  Predcpred 6320  infcinf 9481  wsuccwsuc 35811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-riota 7388  df-sup 9482  df-inf 9483  df-wsuc 35813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator