Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuclb | Structured version Visualization version GIF version |
Description: A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wsuclb.1 | ⊢ (𝜑 → 𝑅 We 𝐴) |
wsuclb.2 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
wsuclb.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
wsuclb.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
wsuclb.5 | ⊢ (𝜑 → 𝑋𝑅𝑌) |
Ref | Expression |
---|---|
wsuclb | ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wsuclb.5 | . . . . 5 ⊢ (𝜑 → 𝑋𝑅𝑌) | |
2 | wsuclb.4 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
3 | wsuclb.3 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | brcnvg 5788 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝑉) → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) | |
5 | 2, 3, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌◡𝑅𝑋 ↔ 𝑋𝑅𝑌)) |
6 | 1, 5 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝑌◡𝑅𝑋) |
7 | elpredg 6216 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) | |
8 | 3, 2, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ 𝑌◡𝑅𝑋)) |
9 | 6, 8 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋)) |
10 | wsuclb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
11 | weso 5580 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) |
13 | wsuclb.2 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
14 | breq2 5078 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
15 | 14 | rspcev 3561 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋𝑅𝑌) → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
16 | 2, 1, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
17 | 10, 13, 3, 16 | wsuclem 33819 | . . . 4 ⊢ (𝜑 → ∃𝑎 ∈ 𝐴 (∀𝑏 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑐𝑅𝑏))) |
18 | 12, 17 | inflb 9248 | . . 3 ⊢ (𝜑 → (𝑌 ∈ Pred(◡𝑅, 𝐴, 𝑋) → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) |
19 | 9, 18 | mpd 15 | . 2 ⊢ (𝜑 → ¬ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
20 | df-wsuc 33806 | . . 3 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
21 | 20 | breq2i 5082 | . 2 ⊢ (𝑌𝑅wsuc(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) |
22 | 19, 21 | sylnibr 329 | 1 ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 Or wor 5502 Se wse 5542 We wwe 5543 ◡ccnv 5588 Predcpred 6201 infcinf 9200 wsuccwsuc 33804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-riota 7232 df-sup 9201 df-inf 9202 df-wsuc 33806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |