Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuccl Structured version   Visualization version   GIF version

Theorem wsuccl 33389
 Description: If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
wsuccl.1 (𝜑𝑅 We 𝐴)
wsuccl.2 (𝜑𝑅 Se 𝐴)
wsuccl.3 (𝜑𝑋𝑉)
wsuccl.4 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
Assertion
Ref Expression
wsuccl (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴)
Distinct variable groups:   𝑦,𝑅   𝑦,𝐴   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)

Proof of Theorem wsuccl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wsuc 33374 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 wsuccl.1 . . . 4 (𝜑𝑅 We 𝐴)
3 weso 5519 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
42, 3syl 17 . . 3 (𝜑𝑅 Or 𝐴)
5 wsuccl.2 . . . 4 (𝜑𝑅 Se 𝐴)
6 wsuccl.3 . . . 4 (𝜑𝑋𝑉)
7 wsuccl.4 . . . 4 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
82, 5, 6, 7wsuclem 33387 . . 3 (𝜑 → ∃𝑎𝐴 (∀𝑏 ∈ Pred (𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (𝑅, 𝐴, 𝑋)𝑐𝑅𝑏)))
94, 8infcl 8998 . 2 (𝜑 → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ 𝐴)
101, 9eqeltrid 2856 1 (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2111  ∃wrex 3071   class class class wbr 5036   Or wor 5446   Se wse 5485   We wwe 5486  ◡ccnv 5527  Predcpred 6130  infcinf 8951  wsuccwsuc 33372 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-cnv 5536  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-iota 6299  df-riota 7114  df-sup 8952  df-inf 8953  df-wsuc 33374 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator