Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuccl Structured version   Visualization version   GIF version

Theorem wsuccl 33389
Description: If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
wsuccl.1 (𝜑𝑅 We 𝐴)
wsuccl.2 (𝜑𝑅 Se 𝐴)
wsuccl.3 (𝜑𝑋𝑉)
wsuccl.4 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
Assertion
Ref Expression
wsuccl (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴)
Distinct variable groups:   𝑦,𝑅   𝑦,𝐴   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)

Proof of Theorem wsuccl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wsuc 33374 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 wsuccl.1 . . . 4 (𝜑𝑅 We 𝐴)
3 weso 5519 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
42, 3syl 17 . . 3 (𝜑𝑅 Or 𝐴)
5 wsuccl.2 . . . 4 (𝜑𝑅 Se 𝐴)
6 wsuccl.3 . . . 4 (𝜑𝑋𝑉)
7 wsuccl.4 . . . 4 (𝜑 → ∃𝑦𝐴 𝑋𝑅𝑦)
82, 5, 6, 7wsuclem 33387 . . 3 (𝜑 → ∃𝑎𝐴 (∀𝑏 ∈ Pred (𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (𝑅, 𝐴, 𝑋)𝑐𝑅𝑏)))
94, 8infcl 8998 . 2 (𝜑 → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ 𝐴)
101, 9eqeltrid 2856 1 (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wrex 3071   class class class wbr 5036   Or wor 5446   Se wse 5485   We wwe 5486  ccnv 5527  Predcpred 6130  infcinf 8951  wsuccwsuc 33372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-cnv 5536  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-iota 6299  df-riota 7114  df-sup 8952  df-inf 8953  df-wsuc 33374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator