| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuccl | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wsuccl.1 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| wsuccl.2 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| wsuccl.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| wsuccl.4 | ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) |
| Ref | Expression |
|---|---|
| wsuccl | ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wsuc 35846 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
| 2 | wsuccl.1 | . . . 4 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 3 | weso 5602 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) |
| 5 | wsuccl.2 | . . . 4 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 6 | wsuccl.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 7 | wsuccl.4 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) | |
| 8 | 2, 5, 6, 7 | wsuclem 35859 | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐴 (∀𝑏 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑏𝑅𝑎 ∧ ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 → ∃𝑐 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑐𝑅𝑏))) |
| 9 | 4, 8 | infcl 9368 | . 2 ⊢ (𝜑 → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ 𝐴) |
| 10 | 1, 9 | eqeltrid 2835 | 1 ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5086 Or wor 5518 Se wse 5562 We wwe 5563 ◡ccnv 5610 Predcpred 6242 infcinf 9320 wsuccwsuc 35844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-riota 7298 df-sup 9321 df-inf 9322 df-wsuc 35846 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |