Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfwsuc Structured version   Visualization version   GIF version

Theorem nfwsuc 35812
Description: Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
nfwsuc.1 𝑥𝑅
nfwsuc.2 𝑥𝐴
nfwsuc.3 𝑥𝑋
Assertion
Ref Expression
nfwsuc 𝑥wsuc(𝑅, 𝐴, 𝑋)

Proof of Theorem nfwsuc
StepHypRef Expression
1 df-wsuc 35806 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 nfwsuc.1 . . . . 5 𝑥𝑅
32nfcnv 5821 . . . 4 𝑥𝑅
4 nfwsuc.2 . . . 4 𝑥𝐴
5 nfwsuc.3 . . . 4 𝑥𝑋
63, 4, 5nfpred 6254 . . 3 𝑥Pred(𝑅, 𝐴, 𝑋)
76, 4, 2nfinf 9373 . 2 𝑥inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
81, 7nfcxfr 2889 1 𝑥wsuc(𝑅, 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  ccnv 5618  Predcpred 6248  infcinf 9331  wsuccwsuc 35804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-sup 9332  df-inf 9333  df-wsuc 35806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator