Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfwsuc Structured version   Visualization version   GIF version

Theorem nfwsuc 35782
Description: Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
nfwsuc.1 𝑥𝑅
nfwsuc.2 𝑥𝐴
nfwsuc.3 𝑥𝑋
Assertion
Ref Expression
nfwsuc 𝑥wsuc(𝑅, 𝐴, 𝑋)

Proof of Theorem nfwsuc
StepHypRef Expression
1 df-wsuc 35776 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 nfwsuc.1 . . . . 5 𝑥𝑅
32nfcnv 5903 . . . 4 𝑥𝑅
4 nfwsuc.2 . . . 4 𝑥𝐴
5 nfwsuc.3 . . . 4 𝑥𝑋
63, 4, 5nfpred 6337 . . 3 𝑥Pred(𝑅, 𝐴, 𝑋)
76, 4, 2nfinf 9551 . 2 𝑥inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
81, 7nfcxfr 2906 1 𝑥wsuc(𝑅, 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2893  ccnv 5699  Predcpred 6331  infcinf 9510  wsuccwsuc 35774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-sup 9511  df-inf 9512  df-wsuc 35776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator