![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfwsuc | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
nfwsuc.1 | ⊢ Ⅎ𝑥𝑅 |
nfwsuc.2 | ⊢ Ⅎ𝑥𝐴 |
nfwsuc.3 | ⊢ Ⅎ𝑥𝑋 |
Ref | Expression |
---|---|
nfwsuc | ⊢ Ⅎ𝑥wsuc(𝑅, 𝐴, 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wsuc 35776 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
2 | nfwsuc.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
3 | 2 | nfcnv 5903 | . . . 4 ⊢ Ⅎ𝑥◡𝑅 |
4 | nfwsuc.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
5 | nfwsuc.3 | . . . 4 ⊢ Ⅎ𝑥𝑋 | |
6 | 3, 4, 5 | nfpred 6337 | . . 3 ⊢ Ⅎ𝑥Pred(◡𝑅, 𝐴, 𝑋) |
7 | 6, 4, 2 | nfinf 9551 | . 2 ⊢ Ⅎ𝑥inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
8 | 1, 7 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥wsuc(𝑅, 𝐴, 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ◡ccnv 5699 Predcpred 6331 infcinf 9510 wsuccwsuc 35774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-sup 9511 df-inf 9512 df-wsuc 35776 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |