Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfwsuc Structured version   Visualization version   GIF version

Theorem nfwsuc 35545
Description: Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypotheses
Ref Expression
nfwsuc.1 𝑥𝑅
nfwsuc.2 𝑥𝐴
nfwsuc.3 𝑥𝑋
Assertion
Ref Expression
nfwsuc 𝑥wsuc(𝑅, 𝐴, 𝑋)

Proof of Theorem nfwsuc
StepHypRef Expression
1 df-wsuc 35539 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 nfwsuc.1 . . . . 5 𝑥𝑅
32nfcnv 5881 . . . 4 𝑥𝑅
4 nfwsuc.2 . . . 4 𝑥𝐴
5 nfwsuc.3 . . . 4 𝑥𝑋
63, 4, 5nfpred 6312 . . 3 𝑥Pred(𝑅, 𝐴, 𝑋)
76, 4, 2nfinf 9507 . 2 𝑥inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
81, 7nfcxfr 2889 1 𝑥wsuc(𝑅, 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2875  ccnv 5677  Predcpred 6306  infcinf 9466  wsuccwsuc 35537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-sup 9467  df-inf 9468  df-wsuc 35539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator