![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsucex | Structured version Visualization version GIF version |
Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
wsucex.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
Ref | Expression |
---|---|
wsucex | ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wsuc 35539 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
2 | wsucex.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
3 | 2 | infexd 9508 | . 2 ⊢ (𝜑 → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | eqeltrid 2829 | 1 ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3461 Or wor 5589 ◡ccnv 5677 Predcpred 6306 infcinf 9466 wsuccwsuc 35537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-po 5590 df-so 5591 df-cnv 5686 df-sup 9467 df-inf 9468 df-wsuc 35539 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |