| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsucex | Structured version Visualization version GIF version | ||
| Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wsucex.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| Ref | Expression |
|---|---|
| wsucex | ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wsuc 35773 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
| 2 | wsucex.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 3 | 2 | infexd 9411 | . 2 ⊢ (𝜑 → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | eqeltrid 2832 | 1 ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 Or wor 5538 ◡ccnv 5630 Predcpred 6261 infcinf 9368 wsuccwsuc 35771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-po 5539 df-so 5540 df-cnv 5639 df-sup 9369 df-inf 9370 df-wsuc 35773 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |