Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsucex Structured version   Visualization version   GIF version

Theorem wsucex 33747
Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypothesis
Ref Expression
wsucex.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
wsucex (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem wsucex
StepHypRef Expression
1 df-wsuc 33733 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 wsucex.1 . . 3 (𝜑𝑅 Or 𝐴)
32infexd 9172 . 2 (𝜑 → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ V)
41, 3eqeltrid 2843 1 (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422   Or wor 5493  ccnv 5579  Predcpred 6190  infcinf 9130  wsuccwsuc 33731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-cnv 5588  df-sup 9131  df-inf 9132  df-wsuc 33733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator