Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsucex Structured version   Visualization version   GIF version

Theorem wsucex 35422
Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypothesis
Ref Expression
wsucex.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
wsucex (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem wsucex
StepHypRef Expression
1 df-wsuc 35408 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 wsucex.1 . . 3 (𝜑𝑅 Or 𝐴)
32infexd 9507 . 2 (𝜑 → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ V)
41, 3eqeltrid 2833 1 (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  Vcvv 3471   Or wor 5589  ccnv 5677  Predcpred 6304  infcinf 9465  wsuccwsuc 35406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-po 5590  df-so 5591  df-cnv 5686  df-sup 9466  df-inf 9467  df-wsuc 35408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator