Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsucex Structured version   Visualization version   GIF version

Theorem wsucex 35321
Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypothesis
Ref Expression
wsucex.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
wsucex (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem wsucex
StepHypRef Expression
1 df-wsuc 35307 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 wsucex.1 . . 3 (𝜑𝑅 Or 𝐴)
32infexd 9475 . 2 (𝜑 → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ V)
41, 3eqeltrid 2829 1 (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3466   Or wor 5578  ccnv 5666  Predcpred 6290  infcinf 9433  wsuccwsuc 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-po 5579  df-so 5580  df-cnv 5675  df-sup 9434  df-inf 9435  df-wsuc 35307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator