| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsucex | Structured version Visualization version GIF version | ||
| Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wsucex.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| Ref | Expression |
|---|---|
| wsucex | ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wsuc 35807 | . 2 ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | |
| 2 | wsucex.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 3 | 2 | infexd 9442 | . 2 ⊢ (𝜑 → inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | eqeltrid 2833 | 1 ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 Or wor 5548 ◡ccnv 5640 Predcpred 6276 infcinf 9399 wsuccwsuc 35805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-po 5549 df-so 5550 df-cnv 5649 df-sup 9400 df-inf 9401 df-wsuc 35807 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |