Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsucex Structured version   Visualization version   GIF version

Theorem wsucex 34793
Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Hypothesis
Ref Expression
wsucex.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
wsucex (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem wsucex
StepHypRef Expression
1 df-wsuc 34779 . 2 wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
2 wsucex.1 . . 3 (𝜑𝑅 Or 𝐴)
32infexd 9477 . 2 (𝜑 → inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅) ∈ V)
41, 3eqeltrid 2837 1 (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474   Or wor 5587  ccnv 5675  Predcpred 6299  infcinf 9435  wsuccwsuc 34777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-po 5588  df-so 5589  df-cnv 5684  df-sup 9436  df-inf 9437  df-wsuc 34779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator