Detailed syntax breakdown of Definition df-wwlks
Step | Hyp | Ref
| Expression |
1 | | cwwlks 28091 |
. 2
class
WWalks |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vw |
. . . . . . 7
setvar 𝑤 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑤 |
6 | | c0 4253 |
. . . . . 6
class
∅ |
7 | 5, 6 | wne 2942 |
. . . . 5
wff 𝑤 ≠ ∅ |
8 | | vi |
. . . . . . . . . 10
setvar 𝑖 |
9 | 8 | cv 1538 |
. . . . . . . . 9
class 𝑖 |
10 | 9, 5 | cfv 6418 |
. . . . . . . 8
class (𝑤‘𝑖) |
11 | | c1 10803 |
. . . . . . . . . 10
class
1 |
12 | | caddc 10805 |
. . . . . . . . . 10
class
+ |
13 | 9, 11, 12 | co 7255 |
. . . . . . . . 9
class (𝑖 + 1) |
14 | 13, 5 | cfv 6418 |
. . . . . . . 8
class (𝑤‘(𝑖 + 1)) |
15 | 10, 14 | cpr 4560 |
. . . . . . 7
class {(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} |
16 | 2 | cv 1538 |
. . . . . . . 8
class 𝑔 |
17 | | cedg 27320 |
. . . . . . . 8
class
Edg |
18 | 16, 17 | cfv 6418 |
. . . . . . 7
class
(Edg‘𝑔) |
19 | 15, 18 | wcel 2108 |
. . . . . 6
wff {(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) |
20 | | cc0 10802 |
. . . . . . 7
class
0 |
21 | | chash 13972 |
. . . . . . . . 9
class
♯ |
22 | 5, 21 | cfv 6418 |
. . . . . . . 8
class
(♯‘𝑤) |
23 | | cmin 11135 |
. . . . . . . 8
class
− |
24 | 22, 11, 23 | co 7255 |
. . . . . . 7
class
((♯‘𝑤)
− 1) |
25 | | cfzo 13311 |
. . . . . . 7
class
..^ |
26 | 20, 24, 25 | co 7255 |
. . . . . 6
class
(0..^((♯‘𝑤) − 1)) |
27 | 19, 8, 26 | wral 3063 |
. . . . 5
wff
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) |
28 | 7, 27 | wa 395 |
. . . 4
wff (𝑤 ≠ ∅ ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)) |
29 | | cvtx 27269 |
. . . . . 6
class
Vtx |
30 | 16, 29 | cfv 6418 |
. . . . 5
class
(Vtx‘𝑔) |
31 | 30 | cword 14145 |
. . . 4
class Word
(Vtx‘𝑔) |
32 | 28, 4, 31 | crab 3067 |
. . 3
class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))} |
33 | 2, 3, 32 | cmpt 5153 |
. 2
class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))}) |
34 | 1, 33 | wceq 1539 |
1
wff WWalks =
(𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))}) |