Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-wwlksn | Structured version Visualization version GIF version |
Description: Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 27869. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
df-wwlksn | ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cwwlksn 28092 | . 2 class WWalksN | |
2 | vn | . . 3 setvar 𝑛 | |
3 | vg | . . 3 setvar 𝑔 | |
4 | cn0 12163 | . . 3 class ℕ0 | |
5 | cvv 3422 | . . 3 class V | |
6 | vw | . . . . . . 7 setvar 𝑤 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑤 |
8 | chash 13972 | . . . . . 6 class ♯ | |
9 | 7, 8 | cfv 6418 | . . . . 5 class (♯‘𝑤) |
10 | 2 | cv 1538 | . . . . . 6 class 𝑛 |
11 | c1 10803 | . . . . . 6 class 1 | |
12 | caddc 10805 | . . . . . 6 class + | |
13 | 10, 11, 12 | co 7255 | . . . . 5 class (𝑛 + 1) |
14 | 9, 13 | wceq 1539 | . . . 4 wff (♯‘𝑤) = (𝑛 + 1) |
15 | 3 | cv 1538 | . . . . 5 class 𝑔 |
16 | cwwlks 28091 | . . . . 5 class WWalks | |
17 | 15, 16 | cfv 6418 | . . . 4 class (WWalks‘𝑔) |
18 | 14, 6, 17 | crab 3067 | . . 3 class {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)} |
19 | 2, 3, 4, 5, 18 | cmpo 7257 | . 2 class (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) |
20 | 1, 19 | wceq 1539 | 1 wff WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) |
Colors of variables: wff setvar class |
This definition is referenced by: wwlksn 28103 wwlknbp 28108 wspthsn 28114 iswwlksnon 28119 |
Copyright terms: Public domain | W3C validator |