Step | Hyp | Ref
| Expression |
1 | | cwwlksn 29077 |
. 2
class
WWalksN |
2 | | vn |
. . 3
setvar π |
3 | | vg |
. . 3
setvar π |
4 | | cn0 12471 |
. . 3
class
β0 |
5 | | cvv 3474 |
. . 3
class
V |
6 | | vw |
. . . . . . 7
setvar π€ |
7 | 6 | cv 1540 |
. . . . . 6
class π€ |
8 | | chash 14289 |
. . . . . 6
class
β― |
9 | 7, 8 | cfv 6543 |
. . . . 5
class
(β―βπ€) |
10 | 2 | cv 1540 |
. . . . . 6
class π |
11 | | c1 11110 |
. . . . . 6
class
1 |
12 | | caddc 11112 |
. . . . . 6
class
+ |
13 | 10, 11, 12 | co 7408 |
. . . . 5
class (π + 1) |
14 | 9, 13 | wceq 1541 |
. . . 4
wff
(β―βπ€) =
(π + 1) |
15 | 3 | cv 1540 |
. . . . 5
class π |
16 | | cwwlks 29076 |
. . . . 5
class
WWalks |
17 | 15, 16 | cfv 6543 |
. . . 4
class
(WWalksβπ) |
18 | 14, 6, 17 | crab 3432 |
. . 3
class {π€ β (WWalksβπ) β£ (β―βπ€) = (π + 1)} |
19 | 2, 3, 4, 5, 18 | cmpo 7410 |
. 2
class (π β β0,
π β V β¦ {π€ β (WWalksβπ) β£ (β―βπ€) = (π + 1)}) |
20 | 1, 19 | wceq 1541 |
1
wff WWalksN =
(π β
β0, π
β V β¦ {π€ β
(WWalksβπ) β£
(β―βπ€) = (π + 1)}) |