MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wwlksn Structured version   Visualization version   GIF version

Definition df-wwlksn 29082
Description: Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 28853. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
df-wwlksn WWalksN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (WWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = (𝑛 + 1)})
Distinct variable group:   𝑔,𝑛,𝑀

Detailed syntax breakdown of Definition df-wwlksn
StepHypRef Expression
1 cwwlksn 29077 . 2 class WWalksN
2 vn . . 3 setvar 𝑛
3 vg . . 3 setvar 𝑔
4 cn0 12471 . . 3 class β„•0
5 cvv 3474 . . 3 class V
6 vw . . . . . . 7 setvar 𝑀
76cv 1540 . . . . . 6 class 𝑀
8 chash 14289 . . . . . 6 class β™―
97, 8cfv 6543 . . . . 5 class (β™―β€˜π‘€)
102cv 1540 . . . . . 6 class 𝑛
11 c1 11110 . . . . . 6 class 1
12 caddc 11112 . . . . . 6 class +
1310, 11, 12co 7408 . . . . 5 class (𝑛 + 1)
149, 13wceq 1541 . . . 4 wff (β™―β€˜π‘€) = (𝑛 + 1)
153cv 1540 . . . . 5 class 𝑔
16 cwwlks 29076 . . . . 5 class WWalks
1715, 16cfv 6543 . . . 4 class (WWalksβ€˜π‘”)
1814, 6, 17crab 3432 . . 3 class {𝑀 ∈ (WWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = (𝑛 + 1)}
192, 3, 4, 5, 18cmpo 7410 . 2 class (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (WWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = (𝑛 + 1)})
201, 19wceq 1541 1 wff WWalksN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (WWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = (𝑛 + 1)})
Colors of variables: wff setvar class
This definition is referenced by:  wwlksn  29088  wwlknbp  29093  wspthsn  29099  iswwlksnon  29104
  Copyright terms: Public domain W3C validator