MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks Structured version   Visualization version   GIF version

Theorem wwlks 29865
Description: The set of walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Hypotheses
Ref Expression
wwlks.v 𝑉 = (Vtx‘𝐺)
wwlks.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlks (WWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)}
Distinct variable groups:   𝑖,𝐺,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐸(𝑤,𝑖)   𝑉(𝑖)

Proof of Theorem wwlks
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-wwlks 29860 . . 3 WWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))})
2 fveq2 6907 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 wwlks.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2793 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
5 wrdeq 14571 . . . . 5 ((Vtx‘𝑔) = 𝑉 → Word (Vtx‘𝑔) = Word 𝑉)
64, 5syl 17 . . . 4 (𝑔 = 𝐺 → Word (Vtx‘𝑔) = Word 𝑉)
7 fveq2 6907 . . . . . . . 8 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
8 wwlks.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
97, 8eqtr4di 2793 . . . . . . 7 (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸)
109eleq2d 2825 . . . . . 6 (𝑔 = 𝐺 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
1110ralbidv 3176 . . . . 5 (𝑔 = 𝐺 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
1211anbi2d 630 . . . 4 (𝑔 = 𝐺 → ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)) ↔ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)))
136, 12rabeqbidv 3452 . . 3 (𝑔 = 𝐺 → {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)})
14 id 22 . . 3 (𝐺 ∈ V → 𝐺 ∈ V)
153fvexi 6921 . . . . 5 𝑉 ∈ V
1615a1i 11 . . . 4 (𝐺 ∈ V → 𝑉 ∈ V)
17 wrdexg 14559 . . . 4 (𝑉 ∈ V → Word 𝑉 ∈ V)
18 rabexg 5343 . . . 4 (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)} ∈ V)
1916, 17, 183syl 18 . . 3 (𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)} ∈ V)
201, 13, 14, 19fvmptd3 7039 . 2 (𝐺 ∈ V → (WWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)})
21 fvprc 6899 . . 3 𝐺 ∈ V → (WWalks‘𝐺) = ∅)
22 fvprc 6899 . . . . . . . . . 10 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
233, 22eqtrid 2787 . . . . . . . . 9 𝐺 ∈ V → 𝑉 = ∅)
24 wrdeq 14571 . . . . . . . . 9 (𝑉 = ∅ → Word 𝑉 = Word ∅)
2523, 24syl 17 . . . . . . . 8 𝐺 ∈ V → Word 𝑉 = Word ∅)
2625eleq2d 2825 . . . . . . 7 𝐺 ∈ V → (𝑤 ∈ Word 𝑉𝑤 ∈ Word ∅))
27 0wrd0 14575 . . . . . . 7 (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅)
2826, 27bitrdi 287 . . . . . 6 𝐺 ∈ V → (𝑤 ∈ Word 𝑉𝑤 = ∅))
29 nne 2942 . . . . . . . 8 𝑤 ≠ ∅ ↔ 𝑤 = ∅)
3029biimpri 228 . . . . . . 7 (𝑤 = ∅ → ¬ 𝑤 ≠ ∅)
3130intnanrd 489 . . . . . 6 (𝑤 = ∅ → ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
3228, 31biimtrdi 253 . . . . 5 𝐺 ∈ V → (𝑤 ∈ Word 𝑉 → ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)))
3332ralrimiv 3143 . . . 4 𝐺 ∈ V → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
34 rabeq0 4394 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
3533, 34sylibr 234 . . 3 𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)} = ∅)
3621, 35eqtr4d 2778 . 2 𝐺 ∈ V → (WWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)})
3720, 36pm2.61i 182 1 (WWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  c0 4339  {cpr 4633  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  ..^cfzo 13691  chash 14366  Word cword 14549  Vtxcvtx 29028  Edgcedg 29079  WWalkscwwlks 29855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wwlks 29860
This theorem is referenced by:  iswwlks  29866
  Copyright terms: Public domain W3C validator