| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkn0 | Structured version Visualization version GIF version | ||
| Description: The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlkn0 | ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | wlkp 29597 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 3 | fdm 6665 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹))) | |
| 4 | 3 | eqcomd 2739 | . . . 4 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (0...(♯‘𝐹)) = dom 𝑃) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = dom 𝑃) |
| 6 | wlkcl 29596 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 7 | elnn0uz 12779 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ≥‘0)) | |
| 8 | fzn0 13440 | . . . . 5 ⊢ ((0...(♯‘𝐹)) ≠ ∅ ↔ (♯‘𝐹) ∈ (ℤ≥‘0)) | |
| 9 | 7, 8 | sylbb2 238 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) ≠ ∅) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) ≠ ∅) |
| 11 | 5, 10 | eqnetrrd 2997 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → dom 𝑃 ≠ ∅) |
| 12 | frel 6661 | . . . 4 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃) | |
| 13 | 2, 12 | syl 17 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → Rel 𝑃) |
| 14 | reldm0 5872 | . . . 4 ⊢ (Rel 𝑃 → (𝑃 = ∅ ↔ dom 𝑃 = ∅)) | |
| 15 | 14 | necon3bid 2973 | . . 3 ⊢ (Rel 𝑃 → (𝑃 ≠ ∅ ↔ dom 𝑃 ≠ ∅)) |
| 16 | 13, 15 | syl 17 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃 ≠ ∅ ↔ dom 𝑃 ≠ ∅)) |
| 17 | 11, 16 | mpbird 257 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 class class class wbr 5093 dom cdm 5619 Rel wrel 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℕ0cn0 12388 ℤ≥cuz 12738 ...cfz 13409 ♯chash 14239 Vtxcvtx 28976 Walkscwlks 29577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-wlks 29580 |
| This theorem is referenced by: wlkvv 29607 g0wlk0 29631 wlkiswwlks1 29847 wlknewwlksn 29867 |
| Copyright terms: Public domain | W3C validator |