| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkn0 | Structured version Visualization version GIF version | ||
| Description: The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlkn0 | ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | wlkp 29596 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 3 | fdm 6715 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹))) | |
| 4 | 3 | eqcomd 2741 | . . . 4 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (0...(♯‘𝐹)) = dom 𝑃) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) = dom 𝑃) |
| 6 | wlkcl 29595 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 7 | elnn0uz 12897 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ≥‘0)) | |
| 8 | fzn0 13555 | . . . . 5 ⊢ ((0...(♯‘𝐹)) ≠ ∅ ↔ (♯‘𝐹) ∈ (ℤ≥‘0)) | |
| 9 | 7, 8 | sylbb2 238 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) ≠ ∅) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝐹)) ≠ ∅) |
| 11 | 5, 10 | eqnetrrd 3000 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → dom 𝑃 ≠ ∅) |
| 12 | frel 6711 | . . . 4 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃) | |
| 13 | 2, 12 | syl 17 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → Rel 𝑃) |
| 14 | reldm0 5907 | . . . 4 ⊢ (Rel 𝑃 → (𝑃 = ∅ ↔ dom 𝑃 = ∅)) | |
| 15 | 14 | necon3bid 2976 | . . 3 ⊢ (Rel 𝑃 → (𝑃 ≠ ∅ ↔ dom 𝑃 ≠ ∅)) |
| 16 | 13, 15 | syl 17 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃 ≠ ∅ ↔ dom 𝑃 ≠ ∅)) |
| 17 | 11, 16 | mpbird 257 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 class class class wbr 5119 dom cdm 5654 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℕ0cn0 12501 ℤ≥cuz 12852 ...cfz 13524 ♯chash 14348 Vtxcvtx 28975 Walkscwlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-wlks 29579 |
| This theorem is referenced by: wlkvv 29607 g0wlk0 29632 wlkiswwlks1 29849 wlknewwlksn 29869 |
| Copyright terms: Public domain | W3C validator |