MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksnon Structured version   Visualization version   GIF version

Theorem iswwlksnon 29831
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswwlksnon (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺   𝑤,𝑁   𝑤,𝑉

Proof of Theorem iswwlksnon
Dummy variables 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 7383 . . 3 (𝐴𝐵) = ∅
2 df-wwlksnon 29810 . . . . 5 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
32mpondm0 7586 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksNOn 𝐺) = ∅)
43oveqd 7363 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = (𝐴𝐵))
5 df-wwlksn 29809 . . . . . 6 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
65mpondm0 7586 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅)
76rabeqdv 3410 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = {𝑤 ∈ ∅ ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
8 rab0 4333 . . . 4 {𝑤 ∈ ∅ ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅
97, 8eqtrdi 2782 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅)
101, 4, 93eqtr4a 2792 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
11 iswwlksnon.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
1211wwlksnon 29829 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
1312adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
1413oveqd 7363 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵))
15 eqid 2731 . . . . . . . 8 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})
1615mpondm0 7586 . . . . . . 7 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵) = ∅)
1716adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵) = ∅)
1814, 17eqtrd 2766 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
1918ex 412 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅))
204, 1eqtrdi 2782 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
2120a1d 25 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅))
2219, 21pm2.61i 182 . . 3 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
2311wwlknllvtx 29824 . . . . . . 7 (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤‘0) ∈ 𝑉 ∧ (𝑤𝑁) ∈ 𝑉))
24 eleq1 2819 . . . . . . . . 9 (𝐴 = (𝑤‘0) → (𝐴𝑉 ↔ (𝑤‘0) ∈ 𝑉))
2524eqcoms 2739 . . . . . . . 8 ((𝑤‘0) = 𝐴 → (𝐴𝑉 ↔ (𝑤‘0) ∈ 𝑉))
26 eleq1 2819 . . . . . . . . 9 (𝐵 = (𝑤𝑁) → (𝐵𝑉 ↔ (𝑤𝑁) ∈ 𝑉))
2726eqcoms 2739 . . . . . . . 8 ((𝑤𝑁) = 𝐵 → (𝐵𝑉 ↔ (𝑤𝑁) ∈ 𝑉))
2825, 27bi2anan9 638 . . . . . . 7 (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) → ((𝐴𝑉𝐵𝑉) ↔ ((𝑤‘0) ∈ 𝑉 ∧ (𝑤𝑁) ∈ 𝑉)))
2923, 28syl5ibrcom 247 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) → (𝐴𝑉𝐵𝑉)))
3029con3rr3 155 . . . . 5 (¬ (𝐴𝑉𝐵𝑉) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)))
3130ralrimiv 3123 . . . 4 (¬ (𝐴𝑉𝐵𝑉) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵))
32 rabeq0 4335 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵))
3331, 32sylibr 234 . . 3 (¬ (𝐴𝑉𝐵𝑉) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅)
3422, 33eqtr4d 2769 . 2 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
3512adantr 480 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
36 eqeq2 2743 . . . . . 6 (𝑎 = 𝐴 → ((𝑤‘0) = 𝑎 ↔ (𝑤‘0) = 𝐴))
37 eqeq2 2743 . . . . . 6 (𝑏 = 𝐵 → ((𝑤𝑁) = 𝑏 ↔ (𝑤𝑁) = 𝐵))
3836, 37bi2anan9 638 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)))
3938rabbidv 3402 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
4039adantl 481 . . 3 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
41 simprl 770 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
42 simprr 772 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
43 ovex 7379 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
4443rabex 5275 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} ∈ V
4544a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} ∈ V)
4635, 40, 41, 42, 45ovmpod 7498 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
4710, 34, 46ecase 1033 1 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  c0 4280  cfv 6481  (class class class)co 7346  cmpo 7348  0cc0 11006  1c1 11007   + caddc 11009  0cn0 12381  chash 14237  Vtxcvtx 28974  WWalkscwwlks 29803   WWalksN cwwlksn 29804   WWalksNOn cwwlksnon 29805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-wwlks 29808  df-wwlksn 29809  df-wwlksnon 29810
This theorem is referenced by:  wwlknon  29835  wwlksnonfi  29898  wpthswwlks2on  29942  clwwlknclwwlkdif  29959  clwwlknclwwlkdifnum  29960  numclwwlkqhash  30355
  Copyright terms: Public domain W3C validator