MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksnon Structured version   Visualization version   GIF version

Theorem iswwlksnon 27159
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswwlksnon (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺   𝑤,𝑁   𝑤,𝑉

Proof of Theorem iswwlksnon
Dummy variables 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 6946 . . 3 (𝐴𝐵) = ∅
2 df-wwlksnon 27138 . . . . 5 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
32mpt2ndm0 7140 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksNOn 𝐺) = ∅)
43oveqd 6927 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = (𝐴𝐵))
5 df-wwlksn 27137 . . . . . 6 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
65mpt2ndm0 7140 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅)
76rabeqdv 3407 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = {𝑤 ∈ ∅ ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
8 rab0 4187 . . . 4 {𝑤 ∈ ∅ ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅
97, 8syl6eq 2877 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅)
101, 4, 93eqtr4a 2887 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
11 iswwlksnon.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
1211wwlksnon 27157 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
1312adantr 474 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
1413oveqd 6927 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵))
15 eqid 2825 . . . . . . . 8 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})
1615mpt2ndm0 7140 . . . . . . 7 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵) = ∅)
1716adantl 475 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵) = ∅)
1814, 17eqtrd 2861 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
1918ex 403 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅))
204, 1syl6eq 2877 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
2120a1d 25 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅))
2219, 21pm2.61i 177 . . 3 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
2311wwlknllvtx 27152 . . . . . . 7 (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤‘0) ∈ 𝑉 ∧ (𝑤𝑁) ∈ 𝑉))
24 eleq1 2894 . . . . . . . . 9 (𝐴 = (𝑤‘0) → (𝐴𝑉 ↔ (𝑤‘0) ∈ 𝑉))
2524eqcoms 2833 . . . . . . . 8 ((𝑤‘0) = 𝐴 → (𝐴𝑉 ↔ (𝑤‘0) ∈ 𝑉))
26 eleq1 2894 . . . . . . . . 9 (𝐵 = (𝑤𝑁) → (𝐵𝑉 ↔ (𝑤𝑁) ∈ 𝑉))
2726eqcoms 2833 . . . . . . . 8 ((𝑤𝑁) = 𝐵 → (𝐵𝑉 ↔ (𝑤𝑁) ∈ 𝑉))
2825, 27bi2anan9 629 . . . . . . 7 (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) → ((𝐴𝑉𝐵𝑉) ↔ ((𝑤‘0) ∈ 𝑉 ∧ (𝑤𝑁) ∈ 𝑉)))
2923, 28syl5ibrcom 239 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) → (𝐴𝑉𝐵𝑉)))
3029con3rr3 153 . . . . 5 (¬ (𝐴𝑉𝐵𝑉) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)))
3130ralrimiv 3174 . . . 4 (¬ (𝐴𝑉𝐵𝑉) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵))
32 rabeq0 4188 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵))
3331, 32sylibr 226 . . 3 (¬ (𝐴𝑉𝐵𝑉) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅)
3422, 33eqtr4d 2864 . 2 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
3512adantr 474 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
36 eqeq2 2836 . . . . . 6 (𝑎 = 𝐴 → ((𝑤‘0) = 𝑎 ↔ (𝑤‘0) = 𝐴))
37 eqeq2 2836 . . . . . 6 (𝑏 = 𝐵 → ((𝑤𝑁) = 𝑏 ↔ (𝑤𝑁) = 𝐵))
3836, 37bi2anan9 629 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)))
3938rabbidv 3402 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
4039adantl 475 . . 3 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
41 simprl 787 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
42 simprr 789 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
43 ovex 6942 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
4443rabex 5039 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} ∈ V
4544a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} ∈ V)
4635, 40, 41, 42, 45ovmpt2d 7053 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
4710, 34, 46ecase 1060 1 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  {crab 3121  Vcvv 3414  c0 4146  cfv 6127  (class class class)co 6910  cmpt2 6912  0cc0 10259  1c1 10260   + caddc 10262  0cn0 11625  chash 13417  Vtxcvtx 26301  WWalkscwwlks 27131   WWalksN cwwlksn 27132   WWalksNOn cwwlksnon 27133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-er 8014  df-map 8129  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-hash 13418  df-word 13582  df-wwlks 27136  df-wwlksn 27137  df-wwlksnon 27138
This theorem is referenced by:  wwlknon  27163  wwlksnonfi  27256  wpthswwlks2on  27297  clwwlknclwwlkdif  27315  clwwlknclwwlkdifnum  27316  numclwwlkqhash  27774
  Copyright terms: Public domain W3C validator