MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksnon Structured version   Visualization version   GIF version

Theorem iswwlksnon 29840
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
iswwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iswwlksnon (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺   𝑤,𝑁   𝑤,𝑉

Proof of Theorem iswwlksnon
Dummy variables 𝑎 𝑏 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ov 7447 . . 3 (𝐴𝐵) = ∅
2 df-wwlksnon 29819 . . . . 5 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
32mpondm0 7652 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksNOn 𝐺) = ∅)
43oveqd 7427 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = (𝐴𝐵))
5 df-wwlksn 29818 . . . . . 6 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
65mpondm0 7652 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅)
76rabeqdv 3436 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = {𝑤 ∈ ∅ ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
8 rab0 4366 . . . 4 {𝑤 ∈ ∅ ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅
97, 8eqtrdi 2787 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅)
101, 4, 93eqtr4a 2797 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
11 iswwlksnon.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
1211wwlksnon 29838 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
1312adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
1413oveqd 7427 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵))
15 eqid 2736 . . . . . . . 8 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})
1615mpondm0 7652 . . . . . . 7 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵) = ∅)
1716adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})𝐵) = ∅)
1814, 17eqtrd 2771 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ ¬ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
1918ex 412 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅))
204, 1eqtrdi 2787 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
2120a1d 25 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅))
2219, 21pm2.61i 182 . . 3 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅)
2311wwlknllvtx 29833 . . . . . . 7 (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤‘0) ∈ 𝑉 ∧ (𝑤𝑁) ∈ 𝑉))
24 eleq1 2823 . . . . . . . . 9 (𝐴 = (𝑤‘0) → (𝐴𝑉 ↔ (𝑤‘0) ∈ 𝑉))
2524eqcoms 2744 . . . . . . . 8 ((𝑤‘0) = 𝐴 → (𝐴𝑉 ↔ (𝑤‘0) ∈ 𝑉))
26 eleq1 2823 . . . . . . . . 9 (𝐵 = (𝑤𝑁) → (𝐵𝑉 ↔ (𝑤𝑁) ∈ 𝑉))
2726eqcoms 2744 . . . . . . . 8 ((𝑤𝑁) = 𝐵 → (𝐵𝑉 ↔ (𝑤𝑁) ∈ 𝑉))
2825, 27bi2anan9 638 . . . . . . 7 (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) → ((𝐴𝑉𝐵𝑉) ↔ ((𝑤‘0) ∈ 𝑉 ∧ (𝑤𝑁) ∈ 𝑉)))
2923, 28syl5ibrcom 247 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) → (𝐴𝑉𝐵𝑉)))
3029con3rr3 155 . . . . 5 (¬ (𝐴𝑉𝐵𝑉) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)))
3130ralrimiv 3132 . . . 4 (¬ (𝐴𝑉𝐵𝑉) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵))
32 rabeq0 4368 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵))
3331, 32sylibr 234 . . 3 (¬ (𝐴𝑉𝐵𝑉) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} = ∅)
3422, 33eqtr4d 2774 . 2 (¬ (𝐴𝑉𝐵𝑉) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
3512adantr 480 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
36 eqeq2 2748 . . . . . 6 (𝑎 = 𝐴 → ((𝑤‘0) = 𝑎 ↔ (𝑤‘0) = 𝐴))
37 eqeq2 2748 . . . . . 6 (𝑏 = 𝐵 → ((𝑤𝑁) = 𝑏 ↔ (𝑤𝑁) = 𝐵))
3836, 37bi2anan9 638 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)))
3938rabbidv 3428 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
4039adantl 481 . . 3 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
41 simprl 770 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
42 simprr 772 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
43 ovex 7443 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
4443rabex 5314 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} ∈ V
4544a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)} ∈ V)
4635, 40, 41, 42, 45ovmpod 7564 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)})
4710, 34, 46ecase 1033 1 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  c0 4313  cfv 6536  (class class class)co 7410  cmpo 7412  0cc0 11134  1c1 11135   + caddc 11137  0cn0 12506  chash 14353  Vtxcvtx 28980  WWalkscwwlks 29812   WWalksN cwwlksn 29813   WWalksNOn cwwlksnon 29814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-wwlks 29817  df-wwlksn 29818  df-wwlksnon 29819
This theorem is referenced by:  wwlknon  29844  wwlksnonfi  29907  wpthswwlks2on  29948  clwwlknclwwlkdif  29965  clwwlknclwwlkdifnum  29966  numclwwlkqhash  30361
  Copyright terms: Public domain W3C validator