![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksnon | Structured version Visualization version GIF version |
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.) |
Ref | Expression |
---|---|
wwlksnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlksnon | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wwlksnon 29862 | . . 3 ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}))) |
3 | fveq2 6907 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
4 | wwlksnon.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | eqtr4di 2793 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉) |
7 | oveq12 7440 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺)) | |
8 | fveqeq2 6916 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑤‘𝑛) = 𝑏 ↔ (𝑤‘𝑁) = 𝑏)) | |
9 | 8 | anbi2d 630 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏))) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏))) |
11 | 7, 10 | rabeqbidv 3452 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) |
12 | 6, 6, 11 | mpoeq123dv 7508 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
13 | 12 | adantl 481 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) ∧ (𝑛 = 𝑁 ∧ 𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
14 | simpl 482 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝑁 ∈ ℕ0) | |
15 | elex 3499 | . . 3 ⊢ (𝐺 ∈ 𝑈 → 𝐺 ∈ V) | |
16 | 15 | adantl 481 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝐺 ∈ V) |
17 | 4 | fvexi 6921 | . . . 4 ⊢ 𝑉 ∈ V |
18 | 17, 17 | mpoex 8103 | . . 3 ⊢ (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) ∈ V |
19 | 18 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) ∈ V) |
20 | 2, 13, 14, 16, 19 | ovmpod 7585 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 0cc0 11153 ℕ0cn0 12524 Vtxcvtx 29028 WWalksN cwwlksn 29856 WWalksNOn cwwlksnon 29857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-wwlksnon 29862 |
This theorem is referenced by: iswwlksnon 29883 wwlksnon0 29884 |
Copyright terms: Public domain | W3C validator |