MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnon Structured version   Visualization version   GIF version

Theorem wwlksnon 28625
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
Hypothesis
Ref Expression
wwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlksnon ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↩ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)}))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑀   𝑁,𝑎,𝑏,𝑀   𝑉,𝑎,𝑏
Allowed substitution hints:   𝑈(𝑀,𝑎,𝑏)   𝑉(𝑀)

Proof of Theorem wwlksnon
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wwlksnon 28606 . . 3 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↩ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)}))
21a1i 11 . 2 ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↩ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)})))
3 fveq2 6839 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
4 wwlksnon.v . . . . . 6 𝑉 = (Vtx‘𝐺)
53, 4eqtr4di 2795 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
65adantl 482 . . . 4 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉)
7 oveq12 7360 . . . . 5 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺))
8 fveqeq2 6848 . . . . . . 7 (𝑛 = 𝑁 → ((𝑀‘𝑛) = 𝑏 ↔ (𝑀‘𝑁) = 𝑏))
98anbi2d 629 . . . . . 6 (𝑛 = 𝑁 → (((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏) ↔ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)))
109adantr 481 . . . . 5 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏) ↔ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)))
117, 10rabeqbidv 3422 . . . 4 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)})
126, 6, 11mpoeq123dv 7426 . . 3 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↩ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)}))
1312adantl 482 . 2 (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) ∧ (𝑛 = 𝑁 ∧ 𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↩ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)}))
14 simpl 483 . 2 ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝑁 ∈ ℕ0)
15 elex 3461 . . 3 (𝐺 ∈ 𝑈 → 𝐺 ∈ V)
1615adantl 482 . 2 ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝐺 ∈ V)
174fvexi 6853 . . . 4 𝑉 ∈ V
1817, 17mpoex 8004 . . 3 (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↩ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)}) ∈ V
1918a1i 11 . 2 ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↩ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)}) ∈ V)
202, 13, 14, 16, 19ovmpod 7501 1 ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↩ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑁) = 𝑏)}))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3405  Vcvv 3443  â€˜cfv 6493  (class class class)co 7351   ∈ cmpo 7353  0cc0 11009  â„•0cn0 12371  Vtxcvtx 27776   WWalksN cwwlksn 28600   WWalksNOn cwwlksnon 28601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-1st 7913  df-2nd 7914  df-wwlksnon 28606
This theorem is referenced by:  iswwlksnon  28627  wwlksnon0  28628
  Copyright terms: Public domain W3C validator