![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksnon | Structured version Visualization version GIF version |
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.) |
Ref | Expression |
---|---|
wwlksnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlksnon | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wwlksnon 27131 | . . 3 ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}))) |
3 | fveq2 6433 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
4 | wwlksnon.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | syl6eqr 2879 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
6 | 5 | adantl 475 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉) |
7 | oveq12 6914 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺)) | |
8 | fveqeq2 6442 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑤‘𝑛) = 𝑏 ↔ (𝑤‘𝑁) = 𝑏)) | |
9 | 8 | anbi2d 624 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏))) |
10 | 9 | adantr 474 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏))) |
11 | 7, 10 | rabeqbidv 3408 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) |
12 | 6, 6, 11 | mpt2eq123dv 6977 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
13 | 12 | adantl 475 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) ∧ (𝑛 = 𝑁 ∧ 𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
14 | simpl 476 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝑁 ∈ ℕ0) | |
15 | elex 3429 | . . 3 ⊢ (𝐺 ∈ 𝑈 → 𝐺 ∈ V) | |
16 | 15 | adantl 475 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝐺 ∈ V) |
17 | 4 | fvexi 6447 | . . . 4 ⊢ 𝑉 ∈ V |
18 | 17, 17 | mpt2ex 7510 | . . 3 ⊢ (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) ∈ V |
19 | 18 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) ∈ V) |
20 | 2, 13, 14, 16, 19 | ovmpt2d 7048 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {crab 3121 Vcvv 3414 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 0cc0 10252 ℕ0cn0 11618 Vtxcvtx 26294 WWalksN cwwlksn 27125 WWalksNOn cwwlksnon 27126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-wwlksnon 27131 |
This theorem is referenced by: iswwlksnon 27152 wwlksnon0 27153 |
Copyright terms: Public domain | W3C validator |