MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnon Structured version   Visualization version   GIF version

Theorem wwlksnon 29788
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
Hypothesis
Ref Expression
wwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlksnon ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑤   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏
Allowed substitution hints:   𝑈(𝑤,𝑎,𝑏)   𝑉(𝑤)

Proof of Theorem wwlksnon
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wwlksnon 29769 . . 3 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)})))
3 fveq2 6861 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
4 wwlksnon.v . . . . . 6 𝑉 = (Vtx‘𝐺)
53, 4eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
65adantl 481 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉)
7 oveq12 7399 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺))
8 fveqeq2 6870 . . . . . . 7 (𝑛 = 𝑁 → ((𝑤𝑛) = 𝑏 ↔ (𝑤𝑁) = 𝑏))
98anbi2d 630 . . . . . 6 (𝑛 = 𝑁 → (((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)))
109adantr 480 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)))
117, 10rabeqbidv 3427 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)})
126, 6, 11mpoeq123dv 7467 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
1312adantl 481 . 2 (((𝑁 ∈ ℕ0𝐺𝑈) ∧ (𝑛 = 𝑁𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
14 simpl 482 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝑁 ∈ ℕ0)
15 elex 3471 . . 3 (𝐺𝑈𝐺 ∈ V)
1615adantl 481 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝐺 ∈ V)
174fvexi 6875 . . . 4 𝑉 ∈ V
1817, 17mpoex 8061 . . 3 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}) ∈ V
1918a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}) ∈ V)
202, 13, 14, 16, 19ovmpod 7544 1 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑁) = 𝑏)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  0cn0 12449  Vtxcvtx 28930   WWalksN cwwlksn 29763   WWalksNOn cwwlksnon 29764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-wwlksnon 29769
This theorem is referenced by:  iswwlksnon  29790  wwlksnon0  29791
  Copyright terms: Public domain W3C validator