![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksnon | Structured version Visualization version GIF version |
Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.) |
Ref | Expression |
---|---|
wwlksnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlksnon | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wwlksnon 28777 | . . 3 ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}))) |
3 | fveq2 6842 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
4 | wwlksnon.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | eqtr4di 2794 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉) |
7 | oveq12 7366 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺)) | |
8 | fveqeq2 6851 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑤‘𝑛) = 𝑏 ↔ (𝑤‘𝑁) = 𝑏)) | |
9 | 8 | anbi2d 629 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏))) |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) ↔ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏))) |
11 | 7, 10 | rabeqbidv 3424 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) |
12 | 6, 6, 11 | mpoeq123dv 7432 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
13 | 12 | adantl 482 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) ∧ (𝑛 = 𝑁 ∧ 𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
14 | simpl 483 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝑁 ∈ ℕ0) | |
15 | elex 3463 | . . 3 ⊢ (𝐺 ∈ 𝑈 → 𝐺 ∈ V) | |
16 | 15 | adantl 482 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → 𝐺 ∈ V) |
17 | 4 | fvexi 6856 | . . . 4 ⊢ 𝑉 ∈ V |
18 | 17, 17 | mpoex 8012 | . . 3 ⊢ (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) ∈ V |
19 | 18 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)}) ∈ V) |
20 | 2, 13, 14, 16, 19 | ovmpod 7507 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3407 Vcvv 3445 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 0cc0 11051 ℕ0cn0 12413 Vtxcvtx 27947 WWalksN cwwlksn 28771 WWalksNOn cwwlksnon 28772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-1st 7921 df-2nd 7922 df-wwlksnon 28777 |
This theorem is referenced by: iswwlksnon 28798 wwlksnon0 28799 |
Copyright terms: Public domain | W3C validator |