| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlksnon0 | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for a set of walks of a fixed length between two vertices to be empty. (Contributed by AV, 15-May-2021.) (Proof shortened by AV, 21-May-2021.) |
| Ref | Expression |
|---|---|
| wwlksnon0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wwlksnon0 | ⊢ (¬ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wwlksnon 29819 | . 2 ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | |
| 2 | wwlksnon0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | wwlksnon 29838 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) |
| 4 | 1, 3 | 2mpo0 7661 | 1 ⊢ (¬ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 0cc0 11134 ℕ0cn0 12506 Vtxcvtx 28980 WWalksN cwwlksn 29813 WWalksNOn cwwlksnon 29814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-wwlksnon 29819 |
| This theorem is referenced by: iswspthsnon 29843 |
| Copyright terms: Public domain | W3C validator |