Home | Metamath
Proof Explorer Theorem List (p. 297 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | chel 29601 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | ||
Theorem | chssii 29602 | A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐻 ⊆ ℋ | ||
Theorem | cheli 29603 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) | ||
Theorem | chelii 29604 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ 𝐻 ⇒ ⊢ 𝐴 ∈ ℋ | ||
Theorem | chlimi 29605 | The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) | ||
Theorem | hlim0 29606 | The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | ||
Theorem | hlimcaui 29607 | If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) | ||
Theorem | hlimf 29608 | Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | ||
Theorem | hlimuni 29609 | A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 2-May-2015.) (New usage is discouraged.) |
⊢ ((𝐹 ⇝𝑣 𝐴 ∧ 𝐹 ⇝𝑣 𝐵) → 𝐴 = 𝐵) | ||
Theorem | hlimreui 29610* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
Theorem | hlimeui 29611* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (∃𝑥 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 𝐹 ⇝𝑣 𝑥) | ||
Theorem | isch3 29612* | A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥))) | ||
Theorem | chcompl 29613* | Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐹 ∈ Cauchy ∧ 𝐹:ℕ⟶𝐻) → ∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
Theorem | helch 29614 | The unit Hilbert lattice element (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
⊢ ℋ ∈ Cℋ | ||
Theorem | ifchhv 29615 | Prove if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.) |
⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | ||
Theorem | helsh 29616 | Hilbert space is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ ℋ ∈ Sℋ | ||
Theorem | shsspwh 29617 | Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ Sℋ ⊆ 𝒫 ℋ | ||
Theorem | chsspwh 29618 | Closed subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ Cℋ ⊆ 𝒫 ℋ | ||
Theorem | hsn0elch 29619 | The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ {0ℎ} ∈ Cℋ | ||
Theorem | norm1 29620 | From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝐴)) ·ℎ 𝐴)) = 1) | ||
Theorem | norm1exi 29621* | A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) | ||
Theorem | norm1hex 29622 | A normalized vector can exist only iff the Hilbert space has a nonzero vector. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ ℋ 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ ℋ (normℎ‘𝑦) = 1) | ||
Definition | df-oc 29623* | Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 29651 and chocvali 29670 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) | ||
Definition | df-ch0 29624 | Define the zero for closed subspaces of Hilbert space. See h0elch 29626 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ 0ℋ = {0ℎ} | ||
Theorem | elch0 29625 | Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | ||
Theorem | h0elch 29626 | The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ 0ℋ ∈ Cℋ | ||
Theorem | h0elsh 29627 | The zero subspace is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ 0ℋ ∈ Sℋ | ||
Theorem | hhssva 29628 | The vector addition operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) | ||
Theorem | hhsssm 29629 | The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) | ||
Theorem | hhssnm 29630 | The norm operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) | ||
Theorem | issubgoilem 29631* | Lemma for hhssabloilem 29632. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) | ||
Theorem | hhssabloilem 29632 | Lemma for hhssabloi 29633. Formerly part of proof for hhssabloi 29633 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ) | ||
Theorem | hhssabloi 29633 | Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp | ||
Theorem | hhssablo 29634 | Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp) | ||
Theorem | hhssnv 29635 | Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝑊 ∈ NrmCVec | ||
Theorem | hhssnvt 29636 | Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) | ||
Theorem | hhsst 29637 | A member of Sℋ is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) | ||
Theorem | hhshsslem1 29638 | Lemma for hhsssh 29640. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝑊 ∈ (SubSp‘𝑈) & ⊢ 𝐻 ⊆ ℋ ⇒ ⊢ 𝐻 = (BaseSet‘𝑊) | ||
Theorem | hhshsslem2 29639 | Lemma for hhsssh 29640. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝑊 ∈ (SubSp‘𝑈) & ⊢ 𝐻 ⊆ ℋ ⇒ ⊢ 𝐻 ∈ Sℋ | ||
Theorem | hhsssh 29640 | The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ)) | ||
Theorem | hhsssh2 29641 | The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ ↔ (𝑊 ∈ NrmCVec ∧ 𝐻 ⊆ ℋ)) | ||
Theorem | hhssba 29642 | The base set of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐻 = (BaseSet‘𝑊) | ||
Theorem | hhssvs 29643 | The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) | ||
Theorem | hhssvsf 29644 | Mapping of the vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( −ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 | ||
Theorem | hhssims 29645 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) ⇒ ⊢ 𝐷 = (IndMet‘𝑊) | ||
Theorem | hhssims2 29646 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) | ||
Theorem | hhssmet 29647 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐷 ∈ (Met‘𝐻) | ||
Theorem | hhssmetdval 29648 | Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | hhsscms 29649 | The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐷 ∈ (CMet‘𝐻) | ||
Theorem | hhssbnOLD 29650 | Obsolete version of cssbn 24548: Banach space property of a closed subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝑊 ∈ CBan | ||
Theorem | ocval 29651* | Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) | ||
Theorem | ocel 29652* | Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) | ||
Theorem | shocel 29653* | Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) | ||
Theorem | ocsh 29654 | The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | ||
Theorem | shocsh 29655 | The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | ||
Theorem | ocss 29656 | An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | ||
Theorem | shocss 29657 | An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ⊆ ℋ) | ||
Theorem | occon 29658 | Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) | ||
Theorem | occon2 29659 | Double contraposition for orthogonal complement. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵)))) | ||
Theorem | occon2i 29660 | Double contraposition for orthogonal complement. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ ℋ & ⊢ 𝐵 ⊆ ℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵))) | ||
Theorem | oc0 29661 | The zero vector belongs to an orthogonal complement of a Hilbert subspace. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐻)) | ||
Theorem | ocorth 29662 | Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | ||
Theorem | shocorth 29663 | Members of a subspace and its complement are orthogonal. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | ||
Theorem | ococss 29664 | Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | ||
Theorem | shococss 29665 | Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | ||
Theorem | shorth 29666 | Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) | ||
Theorem | ocin 29667 | Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) | ||
Theorem | occon3 29668 | Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴))) | ||
Theorem | ocnel 29669 | A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) | ||
Theorem | chocvali 29670* | Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of 𝐴 is the set of vectors that are orthogonal to all vectors in 𝐴. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0} | ||
Theorem | shuni 29671 | Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐻 ∈ Sℋ ) & ⊢ (𝜑 → 𝐾 ∈ Sℋ ) & ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) & ⊢ (𝜑 → 𝐴 ∈ 𝐻) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝐶 ∈ 𝐻) & ⊢ (𝜑 → 𝐷 ∈ 𝐾) & ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | chocunii 29672 | Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | pjhthmo 29673* | Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
Theorem | occllem 29674 | Lemma for occl 29675. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ⊆ ℋ) & ⊢ (𝜑 → 𝐹 ∈ Cauchy) & ⊢ (𝜑 → 𝐹:ℕ⟶(⊥‘𝐴)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → (( ⇝𝑣 ‘𝐹) ·ih 𝐵) = 0) | ||
Theorem | occl 29675 | Closure of complement of Hilbert subset. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
Theorem | shoccl 29676 | Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 13-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
Theorem | choccl 29677 | Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
Theorem | choccli 29678 | Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) ∈ Cℋ | ||
Definition | df-shs 29679* | Define subspace sum in Sℋ. See shsval 29683, shsval2i 29758, and shsval3i 29759 for its value. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
⊢ +ℋ = (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) | ||
Definition | df-span 29680* | Define the linear span of a subset of Hilbert space. Definition of span in [Schechter] p. 276. See spanval 29704 for its value. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
⊢ span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) | ||
Definition | df-chj 29681* | Define Hilbert lattice join. See chjval 29723 for its value and chjcl 29728 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 29726. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) | ||
Definition | df-chsup 29682 | Define the supremum of a set of Hilbert lattice elements. See chsupval2 29781 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 29710. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | ||
Theorem | shsval 29683 | Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | ||
Theorem | shsss 29684 | The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ ℋ) | ||
Theorem | shsel 29685* | Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
Theorem | shsel3 29686* | Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 −ℎ 𝑦))) | ||
Theorem | shseli 29687* | Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
Theorem | shscli 29688 | Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ | ||
Theorem | shscl 29689 | Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ∈ Sℋ ) | ||
Theorem | shscom 29690 | Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | ||
Theorem | shsva 29691 | Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsel1 29692 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsel2 29693 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsvs 29694 | Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
Theorem | shsub1 29695 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsub2 29696 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 +ℋ 𝐴)) | ||
Theorem | choc0 29697 | The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
⊢ (⊥‘0ℋ) = ℋ | ||
Theorem | choc1 29698 | The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (⊥‘ ℋ) = 0ℋ | ||
Theorem | chocnul 29699 | Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
⊢ (⊥‘∅) = ℋ | ||
Theorem | shintcli 29700 | Closure of intersection of a nonempty subset of Sℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Sℋ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |