| Metamath
Proof Explorer Theorem List (p. 297 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | wlkn0 29601 | The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ≠ ∅) | ||
| Theorem | wlklenvm1 29602 | The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) | ||
| Theorem | ifpsnprss 29603 | Lemma for wlkvtxeledg 29604: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.) |
| ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) | ||
| Theorem | wlkvtxeledg 29604* | Each pair of adjacent vertices in a walk is a subset of an edge. (Contributed by AV, 28-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | ||
| Theorem | wlkvtxiedg 29605* | The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) | ||
| Theorem | relwlk 29606 | The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
| ⊢ Rel (Walks‘𝐺) | ||
| Theorem | wlkvv 29607 | If there is at least one walk in the graph, all walks are in the universal class of ordered pairs. (Contributed by AV, 2-Jan-2021.) |
| ⊢ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) → 𝑊 ∈ (V × V)) | ||
| Theorem | wlkop 29608 | A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | ||
| Theorem | wlkcpr 29609 | A walk as class with two components. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) | ||
| Theorem | wlk2f 29610* | If there is a walk 𝑊 there is a pair of functions representing this walk. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) → ∃𝑓∃𝑝 𝑓(Walks‘𝐺)𝑝) | ||
| Theorem | wlkcomp 29611* | A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | wlkcompim 29612* | Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) | ||
| Theorem | wlkelwrd 29613 | The components of a walk are words/functions over a zero based range of integers. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) | ||
| Theorem | wlkeq 29614* | Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.) |
| ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st ‘𝐴)‘𝑥) = ((1st ‘𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑥) = ((2nd ‘𝐵)‘𝑥)))) | ||
| Theorem | edginwlk 29615 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 9-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝐾)) ∈ 𝐸) | ||
| Theorem | upgredginwlk 29616 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝐾 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝐾)) ∈ 𝐸)) | ||
| Theorem | iedginwlk 29617 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((Fun 𝐼 ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑋)) ∈ ran 𝐼) | ||
| Theorem | wlkl1loop 29618 | A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.) |
| ⊢ (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)) | ||
| Theorem | wlk1walk 29619* | A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))) | ||
| Theorem | wlk1ewlk 29620 | A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ (𝐺 EdgWalks 1)) | ||
| Theorem | upgriswlk 29621* | Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upgrwlkedg 29622* | The edges of a walk in a pseudograph join exactly the two corresponding adjacent vertices in the walk. (Contributed by AV, 27-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) | ||
| Theorem | upgrwlkcompim 29623* | Implications for the properties of the components of a walk in a pseudograph. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 14-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) | ||
| Theorem | wlkvtxedg 29624* | The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ 𝐸 {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) | ||
| Theorem | upgrwlkvtxedg 29625* | The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) | ||
| Theorem | uspgr2wlkeq 29626* | Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.) |
| ⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑦) = ((2nd ‘𝐵)‘𝑦)))) | ||
| Theorem | uspgr2wlkeq2 29627 | Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.) |
| ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → ((2nd ‘𝐴) = (2nd ‘𝐵) → 𝐴 = 𝐵)) | ||
| Theorem | uspgr2wlkeqi 29628 | Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.) |
| ⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝐴 = 𝐵) | ||
| Theorem | umgrwlknloop 29629* | In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 3-Jan-2021.) |
| ⊢ ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Theorem | wlkv0 29630 | If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st ‘𝑊) = ∅ ∧ (2nd ‘𝑊) = ∅)) | ||
| Theorem | g0wlk0 29631 | There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) | ||
| Theorem | 0wlk0 29632 | There is no walk for the empty set, i.e. in a null graph. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ (Walks‘∅) = ∅ | ||
| Theorem | wlk0prc 29633 | There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ ((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅) | ||
| Theorem | wlklenvclwlk 29634 | The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by JJ, 14-Jan-2024.) |
| ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (〈𝐹, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊))) | ||
| Theorem | wlkson 29635* | The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) | ||
| Theorem | iswlkon 29636 | Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | ||
| Theorem | wlkonprop 29637 | Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | ||
| Theorem | wlkpvtx 29638 | A walk connects vertices. (Contributed by AV, 22-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0...(♯‘𝐹)) → (𝑃‘𝑁) ∈ 𝑉)) | ||
| Theorem | wlkepvtx 29639 | The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉)) | ||
| Theorem | wlkoniswlk 29640 | A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | wlkonwlk 29641 | A walk is a walk between its endpoints. (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 31-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | ||
| Theorem | wlkonwlk1l 29642 | A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.) |
| ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) | ||
| Theorem | wlksoneq1eq2 29643 | Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.) |
| ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | wlkonl1iedg 29644* | If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴 ∈ 𝑒) | ||
| Theorem | wlkon2n0 29645 | The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.) |
| ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐴 ≠ 𝐵) → (♯‘𝐹) ≠ 0) | ||
| Theorem | 2wlklem 29646* | Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | ||
| Theorem | upgr2wlk 29647 | Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) | ||
| Theorem | wlkreslem 29648 | Lemma for wlkres 29649. (Contributed by AV, 5-Mar-2021.) (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → 𝑆 ∈ V) | ||
| Theorem | wlkres 29649 | The restriction 〈𝐻, 𝑄〉 of a walk 〈𝐹, 𝑃〉 to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 30197. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) ⇒ ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) | ||
| Theorem | redwlklem 29650 | Lemma for redwlk 29651. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
| ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉) | ||
| Theorem | redwlk 29651 | A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))) | ||
| Theorem | wlkp1lem1 29652 | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) ⇒ ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) | ||
| Theorem | wlkp1lem2 29653 | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) ⇒ ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) | ||
| Theorem | wlkp1lem3 29654 | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) ⇒ ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) | ||
| Theorem | wlkp1lem4 29655 | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) | ||
| Theorem | wlkp1lem5 29656* | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) | ||
| Theorem | wlkp1lem6 29657* | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | wlkp1lem7 29658 | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) | ||
| Theorem | wlkp1lem8 29659* | Lemma for wlkp1 29660. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))) | ||
| Theorem | wlkp1 29660 | Append one path segment (edge) 𝐸 from vertex (𝑃‘𝑁) to a vertex 𝐶 to a walk 〈𝐹, 𝑃〉 to become a walk 〈𝐻, 𝑄〉 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 30198. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 6-Mar-2021.) (Proof shortened by AV, 18-Apr-2021.) (Revised by AV, 8-Apr-2024.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) ⇒ ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) | ||
| Theorem | wlkdlem1 29661* | Lemma 1 for wlkd 29665. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||
| Theorem | wlkdlem2 29662* | Lemma 2 for wlkd 29665. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ∈ (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | wlkdlem3 29663* | Lemma 3 for wlkd 29665. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | ||
| Theorem | wlkdlem4 29664* | Lemma 4 for wlkd 29665. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 23-Jan-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | wlkd 29665* | Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | lfgrwlkprop 29666* | Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Theorem | lfgriswlk 29667* | Conditions for a pair of functions to be a walk in a loop-free graph. (Contributed by AV, 28-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | lfgrwlknloop 29668* | In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Syntax | ctrls 29669 | Extend class notation with trails (within a graph). |
| class Trails | ||
| Syntax | ctrlson 29670 | Extend class notation with trails between two vertices (within a graph). |
| class TrailsOn | ||
| Definition | df-trls 29671* |
Define the set of all Trails (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A trail is a walk in which all edges are distinct. According to Bollobas: "... walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5. Therefore, a trail can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the trail is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) | ||
| Definition | df-trlson 29672* | Define the collection of trails with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Trails‘𝑔)𝑝)})) | ||
| Theorem | reltrls 29673 | The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.) |
| ⊢ Rel (Trails‘𝐺) | ||
| Theorem | trlsfval 29674* | The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)} | ||
| Theorem | istrl 29675 | Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | ||
| Theorem | trliswlk 29676 | A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.) |
| ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | trlf1 29677 | The enumeration 𝐹 of a trail 〈𝐹, 𝑃〉 is injective. (Contributed by AV, 20-Feb-2021.) (Proof shortened by AV, 29-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) | ||
| Theorem | trlreslem 29678 | Lemma for trlres 29679. Formerly part of proof of eupthres 30197. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) ⇒ ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | ||
| Theorem | trlres 29679 | The restriction 〈𝐻, 𝑄〉 of a trail 〈𝐹, 𝑃〉 to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) ⇒ ⊢ (𝜑 → 𝐻(Trails‘𝑆)𝑄) | ||
| Theorem | upgrtrls 29680* | The set of trails in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐼 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
| Theorem | upgristrl 29681* | Properties of a pair of functions to be a trail in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upgrf1istrl 29682* | Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | wksonproplem 29683* | Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop 29686. (Contributed by AV, 16-Jan-2021.) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) & ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) ⇒ ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | ||
| Theorem | trlsonfval 29684* | The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 15-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(TrailsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)}) | ||
| Theorem | istrlson 29685 | Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | ||
| Theorem | trlsonprop 29686 | Properties of a trail between two vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 16-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | ||
| Theorem | trlsonistrl 29687 | A trail between two vertices is a trail. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 7-Jan-2021.) |
| ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | trlsonwlkon 29688 | A trail between two vertices is a walk between these vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) |
| ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃) | ||
| Theorem | trlontrl 29689 | A trail is a trail between its endpoints. (Contributed by AV, 31-Jan-2021.) |
| ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹((𝑃‘0)(TrailsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | ||
| Syntax | cpths 29690 | Extend class notation with paths (of a graph). |
| class Paths | ||
| Syntax | cspths 29691 | Extend class notation with simple paths (of a graph). |
| class SPaths | ||
| Syntax | cpthson 29692 | Extend class notation with paths between two vertices (within a graph). |
| class PathsOn | ||
| Syntax | cspthson 29693 | Extend class notation with simple paths between two vertices (within a graph). |
| class SPathsOn | ||
| Definition | df-pths 29694* |
Define the set of all paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." According to Bollobas: "... a path is a walk with distinct vertices.", see Notation of [Bollobas] p. 5. (A walk with distinct vertices is actually a simple path, see upgrwlkdvspth 29719). Therefore, a path can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, which is injective restricted to the set { 1 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) | ||
| Definition | df-spths 29695* |
Define the set of all simple paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." Therefore, a simple path can be represented by an injective mapping f from { 1 , ... , n } and an injective mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the simple path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ SPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡𝑝)}) | ||
| Definition | df-pthson 29696* | Define the collection of paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) | ||
| Definition | df-spthson 29697* | Define the collection of simple paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 9-Jan-2021.) |
| ⊢ SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)})) | ||
| Theorem | relpths 29698 | The set (Paths‘𝐺) of all paths on 𝐺 is a set of pairs by our definition of a path, and so is a relation. (Contributed by AV, 30-Oct-2021.) |
| ⊢ Rel (Paths‘𝐺) | ||
| Theorem | pthsfval 29699* | The set of paths (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (Paths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} | ||
| Theorem | spthsfval 29700* | The set of simple paths (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |