| Metamath
Proof Explorer Theorem List (p. 297 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rusgrpropnb 29601* | The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) | ||
| Theorem | rusgrpropedg 29602* | The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020.) (Revised by AV, 27-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) | ||
| Theorem | rusgrpropadjvtx 29603* | The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 27-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) | ||
| Theorem | rusgrnumwrdl2 29604* | In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) | ||
| Theorem | rusgr1vtxlem 29605* | Lemma for rusgr1vtx 29606. (Contributed by AV, 27-Dec-2020.) |
| ⊢ (((∀𝑣 ∈ 𝑉 (♯‘𝐴) = 𝐾 ∧ ∀𝑣 ∈ 𝑉 𝐴 = ∅) ∧ (𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 1)) → 𝐾 = 0) | ||
| Theorem | rusgr1vtx 29606 | If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.) |
| ⊢ (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0) | ||
| Theorem | rgrusgrprc 29607* | The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V | ||
| Theorem | rusgrprc 29608 | The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∣ 𝑔 RegUSGraph 0} ∉ V | ||
| Theorem | rgrprc 29609 | The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∣ 𝑔 RegGraph 0} ∉ V | ||
| Theorem | rgrprcx 29610* | The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V | ||
| Theorem | rgrx0ndm 29611* | 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020.) |
| ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) ⇒ ⊢ 0 ∉ dom 𝑅 | ||
| Theorem | rgrx0nd 29612* | The potentially alternatively defined k-regular graphs is not defined for k=0. (Contributed by AV, 28-Dec-2020.) |
| ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) ⇒ ⊢ (𝑅‘0) = ∅ | ||
A "walk" in a graph is usually defined for simple graphs, multigraphs or even pseudographs as "alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see definition of [Bollobas] p. 4, or "A walk (of length k) in a graph is a nonempty alternating sequence v0 e0 v1 e1 ... e(k-1) vk of vertices and edges in G such that ei = { vi , vi+1 } for all i < k.", see definition of [Diestel] p. 10. Formalizing these definitions (mainly by representing the indexed vertices and edges by functions), a walk is represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges (e is a third function enumerating the edges within the graph, not within the walk), and p enumerates the vertices, see df-wlks 29617. Hence a walk (of length n) is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Alternatively, one could define a walk as a function 𝑤:(0...(2 · 𝑛))⟶((Edg‘𝐺) ∪ (Vtx‘𝐺)) such that for all 0 ≤ 𝑘 ≤ 𝑛, (𝑤‘(2 · 𝑘)) ∈ (Vtx‘𝐺) and for all 0 ≤ 𝑘 ≤ (𝑛 − 1), (𝑤‘((2 · 𝑘) + 1)) ∈ (Edg‘𝐺) and {(𝑤‘(2 · 𝑘)), (𝑤‘((2 · 𝑘) + 2))} ⊆ (𝑤‘((2 · 𝑘) + 1)). Based on our definition of Walks, the class of all walks, more restrictive constructs are defined: * Trails (df-trls 29710): A "walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5, i.e., f(i) =/= f(j) if i =/= j. * Paths (df-pths 29734): A path is a walk whose vertices except the first and the last vertex are distinct, i.e., p(i) =/= p(j) if i < j, except possibly when i = 0 and j = n. * SPaths (simple paths, df-spths 29735): A simple path "is a walk with distinct vertices.", see Notation of [Bollobas] p. 5, i.e., p(i) =/= p(j) if i =/= j. * ClWalks (closed walks, df-clwlks 29791): A walk whose endvertices coincide is called a closed walk, i.e., p(0) = p(n). * Circuits (df-crcts 29806): "A trail whose endvertices coincide (a closed trail) is called a circuit." (see Definition of [Bollobas] p. 5), i.e., f(i) =/= f(j) if i =/= j and p(0) = p(n). Equivalently, a circuit is a closed walk with distinct edges. * Cycles (df-cycls 29807): A path whose endvertices coincide (a closed path) is called a cycle, i.e., p(i) =/= p(j) if i =/= j, except i = 0 and j = n, and p(0) = p(n). Equivalently, a cycle is a closed walk with distinct vertices. * EulerPaths (Eulerian paths, df-eupth 30217): An Eulerian path is "a trail containing all edges [of the graph]" (see definition in [Bollobas] p. 16), i.e., f(i) =/= f(j) if i =/= j and for all edges e(x) there is an 1 <= i <= n with e(x) = e(f(i)). Note, however, that an Eulerian path needs not be a path. * Eulerian circuit: An Eulerian circuit (called Euler tour in the definition in [Diestel] p. 22) is "a circuit in a graph containing all the edges" (see definition in [Bollobas] p. 16), i.e., f(i) =/= f(j) if i =/= j, p(0) = p(n) and for all edges e(x) there is an 1 <= i <= n with e(x) = e(f(i)). Hierarchy of all kinds of walks (apply ssriv 3987 and elopabran 5567 to the mentioned theorems to obtain the following subset relationships, as available for clwlkiswlk 29794, see clwlkwlk 29795 and clwlkswks 29796): * Trails are walks (trliswlk 29715): (Trails‘𝐺) ⊆ (Walks‘𝐺) * Paths are trails (pthistrl 29743): (Paths‘𝐺) ⊆ (Trails‘𝐺) * Simple paths are paths (spthispth 29744): (SPaths‘𝐺) ⊆ (Paths‘𝐺) * Closed walks are walks (clwlkiswlk 29794): (ClWalks‘𝐺) ⊆ (Walks‘𝐺) * Circuits are closed walks (crctisclwlk 29814): (Circuits‘𝐺) ⊆ (ClWalks‘𝐺) * Circuits are trails (crctistrl 29815): (Circuits‘𝐺) ⊆ (Trails‘𝐺) * Cycles are paths (cyclispth 29817): (Cycles‘𝐺) ⊆ (Paths‘𝐺) * Cycles are circuits (cycliscrct 29819): (Cycles‘𝐺) ⊆ (Circuits‘𝐺) * (Non-trivial) cycles are not simple paths (cyclnspth 29821): (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) * Eulerian paths are trails (eupthistrl 30230): (EulerPaths‘𝐺) ⊆ (Trails‘𝐺) Often, it is sufficient to refer to a walk by the natural sequence of its vertices, i.e., omitting its edges in its representation: p(0) p(1) ... p(n-1) p(n), see the corresponding remark in [Diestel] p. 6. The concept of a Word, see df-word 14553, is the appropriate way to define such a sequence (being finite and starting at index 0) of vertices. Therefore, it is used in definition df-wwlks 29850 for WWalks, and the representation of a walk as sequence of its vertices is called "walk as word". Only for simple pseudographs, however, the edges can be uniquely reconstructed from such a representation. In this case, the general definitions of walks and the definition of walks as words are equivalent, see wlkiswwlks 29896. In other cases, there could be more than one edge between two adjacent vertices in the walk (in a multigraph), or two adjacent vertices could be connected by two different hyperedges involving additional vertices (in a hypergraph). Based on this definition of WWalks, the class of all walks as word, more restrictive constructs are defined analogously to the general definition of a walk: * WWalksN (walks of length N as word, df-wwlksn 29851): n = N * WSPathsN (simple paths of length N as word, df-wspthsn 29853): p(i) =/= p(j) if i =/= j and n = N * ClWWalks (closed walks as word, df-clwwlk 30001): p(0) = p(n) * ClWWalksN (closed walks of length N as word, df-clwwlkn 30044): p(0) = p(n) and n = N Finally, there are a couple of definitions for (special) walks 〈𝐹, 𝑃〉 having fixed endpoints 𝐴 and 𝐵: * Walks with particular endpoints (df-wlkson 29618): 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 * Trails with particular endpoints (df-trlson 29711): 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 * Paths with particular endpoints (df-pthson 29736): 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 * Simple paths with particular endpoints (df-spthson 29737): 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 * Walks of a fixed length 𝑁 as words with particular endpoints (df-wwlksnon 29852): (𝐴(𝑁 WWalksNOn 𝐺)𝐵) * Simple paths of a fixed length 𝑁 as words with particular endpoints (df-wspthsnon 29854): (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) * Closed Walks of a fixed length 𝑁 as words anchored at a particular vertex 𝐴 (df-wwlksnon 29852): (𝐴(ClWWalksNOn‘𝐺)𝑁) | ||
A "walk" within a graph is usually defined for simple graphs, multigraphs or even pseudographs as "alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. This definition requires the edges to connect two vertices at most (loops are also allowed: if e(i) is a loop, then x(i-1) = x(i)). For hypergraphs containing hyperedges (i.e. edges connecting more than two vertices), however, a more general definition is needed. Two approaches for a definition applicable for arbitrary hypergraphs are used in the literature: "walks on the vertex level" and "walks on the edge level" (see Aksoy, Joslyn, Marrero, Praggastis, Purvine: "Hypernetwork science via high-order hypergraph walks", June 2020, https://doi.org/10.1140/epjds/s13688-020-00231-0): "walks on the edge level": For a positive integer s, an s-walk of length k between hyperedges f and g is a sequence of hyperedges, f=e(0), e(1), ... , e(k)=g, where for j=1, ... , k, e(j-1) =/= e(j) and e(j-1) and e(j) have at least s vertices in common (according to Aksoy et al.). "walks on the vertex level": For a positive integer s, an s-walk of length k between vertices a and b is a sequence of vertices, a=v(0), v(1), ... , v(k)=b, where for j=1, ... , k, v(j-1) and v(j) are connected by at least s edges (analogous to Aksoy et al.). There are two imperfections for the definition for "walks on the edge level": one is that a walk of length 1 consists of two edges (or a walk of length 0 consists of one edge), whereas a walk of length 1 on the vertex level consists of two vertices and one edge (or a walk of length 0 consists of one vertex and no edge). The other is that edges, especially loops, can be traversed only once (and not repeatedly) because of the condition e(j-1) =/= e(j). The latter is avoided in the definition for EdgWalks, see df-ewlks 29616. To be compatible with the (usual) definition of walks for pseudographs, walks also suitable for arbitrary hypergraphs are defined "on the vertex level" in the following as Walks, see df-wlks 29617, restricting s to 1. wlk1ewlk 29658 shows that such a 1-walk "on the vertex level" induces a 1-walk "on the edge level". | ||
| Syntax | cewlks 29613 | Extend class notation with s-walks "on the edge level" (of a hypergraph). |
| class EdgWalks | ||
| Syntax | cwlks 29614 | Extend class notation with walks (i.e. 1-walks) (of a hypergraph). |
| class Walks | ||
| Syntax | cwlkson 29615 | Extend class notation with walks between two vertices (within a graph). |
| class WalksOn | ||
| Definition | df-ewlks 29616* | Define the set of all s-walks of edges (in a hypergraph) corresponding to s-walks "on the edge level" discussed in Aksoy et al. For an extended nonnegative integer s, an s-walk is a sequence of hyperedges, e(0), e(1), ... , e(k), where e(j-1) and e(j) have at least s vertices in common (for j=1, ... , k). In contrast to the definition in Aksoy et al., 𝑠 = 0 (a 0-walk is an arbitrary sequence of hyperedges) and 𝑠 = +∞ (then the number of common vertices of two adjacent hyperedges must be infinite) are allowed. Furthermore, it is not forbidden that adjacent hyperedges are equal. (Contributed by AV, 4-Jan-2021.) |
| ⊢ EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) | ||
| Definition | df-wlks 29617* |
Define the set of all walks (in a hypergraph). Such walks correspond to
the s-walks "on the vertex level" (with s = 1), and also to
1-walks "on
the edge level" (see wlk1walk 29657) discussed in Aksoy et al. The
predicate 𝐹(Walks‘𝐺)𝑃 can be read as "The pair
〈𝐹, 𝑃〉 represents a walk in a graph
𝐺", see also iswlk 29628.
The condition {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. (𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) should be allowed only if there is a loop at (𝑝‘𝑘). Otherwise, C would be fulfilled by each edge containing (𝑝‘𝑘). According to the definition of [Bollobas] p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020.) |
| ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | ||
| Definition | df-wlkson 29618* | Define the collection of walks with particular endpoints (in a hypergraph). The predicate 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 can be read as "The pair 〈𝐹, 𝑃〉 represents a walk from vertex 𝐴 to vertex 𝐵 in a graph 𝐺", see also iswlkon 29675. This corresponds to the "x0-x(l)-walks", see Definition in [Bollobas] p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) | ||
| Theorem | ewlksfval 29619* | The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) | ||
| Theorem | isewlk 29620* | Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) | ||
| Theorem | ewlkprop 29621* | Properties of an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | ewlkinedg 29622 | The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝐾 ∈ (1..^(♯‘𝐹))) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾))))) | ||
| Theorem | ewlkle 29623 | An s-walk of edges is also a t-walk of edges if 𝑡 ≤ 𝑠. (Contributed by AV, 4-Jan-2021.) |
| ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)) | ||
| Theorem | upgrewlkle2 29624 | In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2) | ||
| Theorem | wkslem1 29625 | Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
| ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) | ||
| Theorem | wkslem2 29626 | Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
| ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘𝐶), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘𝐶)} ⊆ (𝐼‘(𝐹‘𝐵))))) | ||
| Theorem | wksfval 29627* | The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (Walks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) | ||
| Theorem | iswlk 29628* | Properties of a pair of functions to be/represent a walk. (Contributed by AV, 30-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | wlkprop 29629* | Properties of a walk. (Contributed by AV, 5-Nov-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) | ||
| Theorem | wlkv 29630 | The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 3-Feb-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | ||
| Theorem | iswlkg 29631* | Generalization of iswlk 29628: Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | wlkf 29632 | The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) | ||
| Theorem | wlkcl 29633 | A walk has length ♯(𝐹), which is an integer. Formerly proven for an Eulerian path, see eupthcl 30229. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | ||
| Theorem | wlkp 29634 | The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||
| Theorem | wlkpwrd 29635 | The sequence of vertices of a walk is a word over the set of vertices. (Contributed by AV, 27-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word 𝑉) | ||
| Theorem | wlklenvp1 29636 | The number of vertices of a walk (in an undirected graph) is the number of its edges plus 1. (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 1-May-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | ||
| Theorem | wksv 29637* | The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.) |
| ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | ||
| Theorem | wksvOLD 29638* | Obsolete version of wksv 29637 as of 11-Dec-2024. (Contributed by AV, 15-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | ||
| Theorem | wlkn0 29639 | The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ≠ ∅) | ||
| Theorem | wlklenvm1 29640 | The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) | ||
| Theorem | ifpsnprss 29641 | Lemma for wlkvtxeledg 29642: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.) |
| ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) | ||
| Theorem | wlkvtxeledg 29642* | Each pair of adjacent vertices in a walk is a subset of an edge. (Contributed by AV, 28-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | ||
| Theorem | wlkvtxiedg 29643* | The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) | ||
| Theorem | relwlk 29644 | The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
| ⊢ Rel (Walks‘𝐺) | ||
| Theorem | wlkvv 29645 | If there is at least one walk in the graph, all walks are in the universal class of ordered pairs. (Contributed by AV, 2-Jan-2021.) |
| ⊢ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) → 𝑊 ∈ (V × V)) | ||
| Theorem | wlkop 29646 | A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | ||
| Theorem | wlkcpr 29647 | A walk as class with two components. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) | ||
| Theorem | wlk2f 29648* | If there is a walk 𝑊 there is a pair of functions representing this walk. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) → ∃𝑓∃𝑝 𝑓(Walks‘𝐺)𝑝) | ||
| Theorem | wlkcomp 29649* | A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | wlkcompim 29650* | Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) | ||
| Theorem | wlkelwrd 29651 | The components of a walk are words/functions over a zero based range of integers. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) | ||
| Theorem | wlkeq 29652* | Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.) |
| ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st ‘𝐴)‘𝑥) = ((1st ‘𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑥) = ((2nd ‘𝐵)‘𝑥)))) | ||
| Theorem | edginwlk 29653 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 9-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝐾)) ∈ 𝐸) | ||
| Theorem | upgredginwlk 29654 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝐾 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝐾)) ∈ 𝐸)) | ||
| Theorem | iedginwlk 29655 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((Fun 𝐼 ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑋)) ∈ ran 𝐼) | ||
| Theorem | wlkl1loop 29656 | A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.) |
| ⊢ (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)) | ||
| Theorem | wlk1walk 29657* | A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))) | ||
| Theorem | wlk1ewlk 29658 | A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ (𝐺 EdgWalks 1)) | ||
| Theorem | upgriswlk 29659* | Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upgrwlkedg 29660* | The edges of a walk in a pseudograph join exactly the two corresponding adjacent vertices in the walk. (Contributed by AV, 27-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) | ||
| Theorem | upgrwlkcompim 29661* | Implications for the properties of the components of a walk in a pseudograph. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 14-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) | ||
| Theorem | wlkvtxedg 29662* | The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ 𝐸 {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) | ||
| Theorem | upgrwlkvtxedg 29663* | The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) | ||
| Theorem | uspgr2wlkeq 29664* | Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.) |
| ⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑦) = ((2nd ‘𝐵)‘𝑦)))) | ||
| Theorem | uspgr2wlkeq2 29665 | Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.) |
| ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → ((2nd ‘𝐴) = (2nd ‘𝐵) → 𝐴 = 𝐵)) | ||
| Theorem | uspgr2wlkeqi 29666 | Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.) |
| ⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝐴 = 𝐵) | ||
| Theorem | umgrwlknloop 29667* | In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 3-Jan-2021.) |
| ⊢ ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Theorem | wlkResOLD 29668* | Obsolete version of opabresex2 7485 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) ⇒ ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V | ||
| Theorem | wlkv0 29669 | If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st ‘𝑊) = ∅ ∧ (2nd ‘𝑊) = ∅)) | ||
| Theorem | g0wlk0 29670 | There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) | ||
| Theorem | 0wlk0 29671 | There is no walk for the empty set, i.e. in a null graph. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ (Walks‘∅) = ∅ | ||
| Theorem | wlk0prc 29672 | There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| ⊢ ((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅) | ||
| Theorem | wlklenvclwlk 29673 | The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by JJ, 14-Jan-2024.) |
| ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (〈𝐹, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊))) | ||
| Theorem | wlkson 29674* | The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) | ||
| Theorem | iswlkon 29675 | Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | ||
| Theorem | wlkonprop 29676 | Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | ||
| Theorem | wlkpvtx 29677 | A walk connects vertices. (Contributed by AV, 22-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0...(♯‘𝐹)) → (𝑃‘𝑁) ∈ 𝑉)) | ||
| Theorem | wlkepvtx 29678 | The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉)) | ||
| Theorem | wlkoniswlk 29679 | A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | wlkonwlk 29680 | A walk is a walk between its endpoints. (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 31-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | ||
| Theorem | wlkonwlk1l 29681 | A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.) |
| ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) | ||
| Theorem | wlksoneq1eq2 29682 | Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.) |
| ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | wlkonl1iedg 29683* | If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴 ∈ 𝑒) | ||
| Theorem | wlkon2n0 29684 | The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.) |
| ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐴 ≠ 𝐵) → (♯‘𝐹) ≠ 0) | ||
| Theorem | 2wlklem 29685* | Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | ||
| Theorem | upgr2wlk 29686 | Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) | ||
| Theorem | wlkreslem 29687 | Lemma for wlkres 29688. (Contributed by AV, 5-Mar-2021.) (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → 𝑆 ∈ V) | ||
| Theorem | wlkres 29688 | The restriction 〈𝐻, 𝑄〉 of a walk 〈𝐹, 𝑃〉 to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 30234. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) ⇒ ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) | ||
| Theorem | redwlklem 29689 | Lemma for redwlk 29690. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
| ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉) | ||
| Theorem | redwlk 29690 | A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))) | ||
| Theorem | wlkp1lem1 29691 | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) ⇒ ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) | ||
| Theorem | wlkp1lem2 29692 | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) ⇒ ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) | ||
| Theorem | wlkp1lem3 29693 | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) ⇒ ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) | ||
| Theorem | wlkp1lem4 29694 | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) | ||
| Theorem | wlkp1lem5 29695* | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) | ||
| Theorem | wlkp1lem6 29696* | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | wlkp1lem7 29697 | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) | ||
| Theorem | wlkp1lem8 29698* | Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))) | ||
| Theorem | wlkp1 29699 | Append one path segment (edge) 𝐸 from vertex (𝑃‘𝑁) to a vertex 𝐶 to a walk 〈𝐹, 𝑃〉 to become a walk 〈𝐻, 𝑄〉 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 30235. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 6-Mar-2021.) (Proof shortened by AV, 18-Apr-2021.) (Revised by AV, 8-Apr-2024.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) ⇒ ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) | ||
| Theorem | wlkdlem1 29700* | Lemma 1 for wlkd 29704. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |