![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksonvtx | Structured version Visualization version GIF version |
Description: If a word ð represents a walk of length 2 on two classes ðŽ and ð¶, these classes are vertices. (Contributed by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlksonvtx.v | ⢠ð = (Vtxâðº) |
Ref | Expression |
---|---|
wwlksonvtx | ⢠(ð â (ðŽ(ð WWalksNOn ðº)ð¶) â (ðŽ â ð â§ ð¶ â ð)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6898 | . . . . 5 ⢠(Vtxâð) â V | |
2 | 1, 1 | pm3.2i 470 | . . . 4 ⢠((Vtxâð) â V â§ (Vtxâð) â V) |
3 | 2 | rgen2w 3060 | . . 3 ⢠âð â â0 âð â V ((Vtxâð) â V â§ (Vtxâð) â V) |
4 | df-wwlksnon 29595 | . . . 4 ⢠WWalksNOn = (ð â â0, ð â V ⊠(ð â (Vtxâð), ð â (Vtxâð) ⊠{ð€ â (ð WWalksN ð) ⣠((ð€â0) = ð â§ (ð€âð) = ð)})) | |
5 | fveq2 6885 | . . . . . 6 ⢠(ð = ðº â (Vtxâð) = (Vtxâðº)) | |
6 | 5, 5 | jca 511 | . . . . 5 ⢠(ð = ðº â ((Vtxâð) = (Vtxâðº) â§ (Vtxâð) = (Vtxâðº))) |
7 | 6 | adantl 481 | . . . 4 ⢠((ð = ð â§ ð = ðº) â ((Vtxâð) = (Vtxâðº) â§ (Vtxâð) = (Vtxâðº))) |
8 | 4, 7 | el2mpocl 8072 | . . 3 ⢠(âð â â0 âð â V ((Vtxâð) â V â§ (Vtxâð) â V) â (ð â (ðŽ(ð WWalksNOn ðº)ð¶) â ((ð â â0 â§ ðº â V) â§ (ðŽ â (Vtxâðº) â§ ð¶ â (Vtxâðº))))) |
9 | 3, 8 | ax-mp 5 | . 2 ⢠(ð â (ðŽ(ð WWalksNOn ðº)ð¶) â ((ð â â0 â§ ðº â V) â§ (ðŽ â (Vtxâðº) â§ ð¶ â (Vtxâðº)))) |
10 | wwlksonvtx.v | . . . . 5 ⢠ð = (Vtxâðº) | |
11 | 10 | eleq2i 2819 | . . . 4 ⢠(ðŽ â ð â ðŽ â (Vtxâðº)) |
12 | 10 | eleq2i 2819 | . . . 4 ⢠(ð¶ â ð â ð¶ â (Vtxâðº)) |
13 | 11, 12 | anbi12i 626 | . . 3 ⢠((ðŽ â ð â§ ð¶ â ð) â (ðŽ â (Vtxâðº) â§ ð¶ â (Vtxâðº))) |
14 | 13 | biimpri 227 | . 2 ⢠((ðŽ â (Vtxâðº) â§ ð¶ â (Vtxâðº)) â (ðŽ â ð â§ ð¶ â ð)) |
15 | 9, 14 | simpl2im 503 | 1 ⢠(ð â (ðŽ(ð WWalksNOn ðº)ð¶) â (ðŽ â ð â§ ð¶ â ð)) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 395 = wceq 1533 â wcel 2098 âwral 3055 {crab 3426 Vcvv 3468 âcfv 6537 (class class class)co 7405 0cc0 11112 â0cn0 12476 Vtxcvtx 28764 WWalksN cwwlksn 29589 WWalksNOn cwwlksnon 29590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-wwlksnon 29595 |
This theorem is referenced by: iswspthsnon 29619 wwlks2onv 29716 elwwlks2ons3im 29717 |
Copyright terms: Public domain | W3C validator |