Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wwlksonvtx | Structured version Visualization version GIF version |
Description: If a word 𝑊 represents a walk of length 2 on two classes 𝐴 and 𝐶, these classes are vertices. (Contributed by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlksonvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlksonvtx | ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . . 5 ⊢ (Vtx‘𝑔) ∈ V | |
2 | 1, 1 | pm3.2i 470 | . . . 4 ⊢ ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) |
3 | 2 | rgen2w 3076 | . . 3 ⊢ ∀𝑛 ∈ ℕ0 ∀𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) |
4 | df-wwlksnon 28098 | . . . 4 ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | |
5 | fveq2 6756 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
6 | 5, 5 | jca 511 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺))) |
7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺))) |
8 | 4, 7 | el2mpocl 7897 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∀𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))) |
9 | 3, 8 | ax-mp 5 | . 2 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
10 | wwlksonvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | 10 | eleq2i 2830 | . . . 4 ⊢ (𝐴 ∈ 𝑉 ↔ 𝐴 ∈ (Vtx‘𝐺)) |
12 | 10 | eleq2i 2830 | . . . 4 ⊢ (𝐶 ∈ 𝑉 ↔ 𝐶 ∈ (Vtx‘𝐺)) |
13 | 11, 12 | anbi12i 626 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
14 | 13 | biimpri 227 | . 2 ⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
15 | 9, 14 | simpl2im 503 | 1 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 Vtxcvtx 27269 WWalksN cwwlksn 28092 WWalksNOn cwwlksnon 28093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-wwlksnon 28098 |
This theorem is referenced by: iswspthsnon 28122 wwlks2onv 28219 elwwlks2ons3im 28220 |
Copyright terms: Public domain | W3C validator |