MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksonvtx Structured version   Visualization version   GIF version

Theorem wwlksonvtx 29888
Description: If a word 𝑊 represents a walk of length 2 on two classes 𝐴 and 𝐶, these classes are vertices. (Contributed by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlksonvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlksonvtx (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))

Proof of Theorem wwlksonvtx
Dummy variables 𝑎 𝑏 𝑔 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . . 5 (Vtx‘𝑔) ∈ V
21, 1pm3.2i 470 . . . 4 ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
32rgen2w 3072 . . 3 𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V)
4 df-wwlksnon 29865 . . . 4 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
5 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
65, 5jca 511 . . . . 5 (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
76adantl 481 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺)))
84, 7el2mpocl 8127 . . 3 (∀𝑛 ∈ ℕ0𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))))
93, 8ax-mp 5 . 2 (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
10 wwlksonvtx.v . . . . 5 𝑉 = (Vtx‘𝐺)
1110eleq2i 2836 . . . 4 (𝐴𝑉𝐴 ∈ (Vtx‘𝐺))
1210eleq2i 2836 . . . 4 (𝐶𝑉𝐶 ∈ (Vtx‘𝐺))
1311, 12anbi12i 627 . . 3 ((𝐴𝑉𝐶𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
1413biimpri 228 . 2 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴𝑉𝐶𝑉))
159, 14simpl2im 503 1 (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cfv 6573  (class class class)co 7448  0cc0 11184  0cn0 12553  Vtxcvtx 29031   WWalksN cwwlksn 29859   WWalksNOn cwwlksnon 29860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-wwlksnon 29865
This theorem is referenced by:  iswspthsnon  29889  wwlks2onv  29986  elwwlks2ons3im  29987
  Copyright terms: Public domain W3C validator