| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlksonvtx | Structured version Visualization version GIF version | ||
| Description: If a word 𝑊 represents a walk of length 2 on two classes 𝐴 and 𝐶, these classes are vertices. (Contributed by AV, 14-Mar-2022.) |
| Ref | Expression |
|---|---|
| wwlksonvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wwlksonvtx | ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . 5 ⊢ (Vtx‘𝑔) ∈ V | |
| 2 | 1, 1 | pm3.2i 470 | . . . 4 ⊢ ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) |
| 3 | 2 | rgen2w 3052 | . . 3 ⊢ ∀𝑛 ∈ ℕ0 ∀𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) |
| 4 | df-wwlksnon 29810 | . . . 4 ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | |
| 5 | fveq2 6822 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
| 6 | 5, 5 | jca 511 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺))) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺))) |
| 8 | 4, 7 | el2mpocl 8016 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∀𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))) |
| 9 | 3, 8 | ax-mp 5 | . 2 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 10 | wwlksonvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 11 | 10 | eleq2i 2823 | . . . 4 ⊢ (𝐴 ∈ 𝑉 ↔ 𝐴 ∈ (Vtx‘𝐺)) |
| 12 | 10 | eleq2i 2823 | . . . 4 ⊢ (𝐶 ∈ 𝑉 ↔ 𝐶 ∈ (Vtx‘𝐺)) |
| 13 | 11, 12 | anbi12i 628 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
| 14 | 13 | biimpri 228 | . 2 ⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 15 | 9, 14 | simpl2im 503 | 1 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℕ0cn0 12381 Vtxcvtx 28974 WWalksN cwwlksn 29804 WWalksNOn cwwlksnon 29805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-wwlksnon 29810 |
| This theorem is referenced by: iswspthsnon 29834 wwlks2onv 29931 elwwlks2ons3im 29932 |
| Copyright terms: Public domain | W3C validator |