![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksonvtx | Structured version Visualization version GIF version |
Description: If a word 𝑊 represents a walk of length 2 on two classes 𝐴 and 𝐶, these classes are vertices. (Contributed by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlksonvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlksonvtx | ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6512 | . . . . 5 ⊢ (Vtx‘𝑔) ∈ V | |
2 | 1, 1 | pm3.2i 463 | . . . 4 ⊢ ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) |
3 | 2 | rgen2w 3101 | . . 3 ⊢ ∀𝑛 ∈ ℕ0 ∀𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) |
4 | df-wwlksnon 27318 | . . . 4 ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | |
5 | fveq2 6499 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
6 | 5, 5 | jca 504 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺))) |
7 | 6 | adantl 474 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (Vtx‘𝑔) = (Vtx‘𝐺))) |
8 | 4, 7 | el2mpocl 7589 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∀𝑔 ∈ V ((Vtx‘𝑔) ∈ V ∧ (Vtx‘𝑔) ∈ V) → (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))) |
9 | 3, 8 | ax-mp 5 | . 2 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
10 | wwlksonvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | 10 | eleq2i 2857 | . . . 4 ⊢ (𝐴 ∈ 𝑉 ↔ 𝐴 ∈ (Vtx‘𝐺)) |
12 | 10 | eleq2i 2857 | . . . 4 ⊢ (𝐶 ∈ 𝑉 ↔ 𝐶 ∈ (Vtx‘𝐺)) |
13 | 11, 12 | anbi12i 617 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
14 | 13 | biimpri 220 | . 2 ⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
15 | 9, 14 | simpl2im 496 | 1 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3088 {crab 3092 Vcvv 3415 ‘cfv 6188 (class class class)co 6976 0cc0 10335 ℕ0cn0 11707 Vtxcvtx 26484 WWalksN cwwlksn 27312 WWalksNOn cwwlksnon 27313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-wwlksnon 27318 |
This theorem is referenced by: iswspthsnon 27342 wwlks2onv 27459 elwwlks2ons3im 27460 |
Copyright terms: Public domain | W3C validator |