Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 10871 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 10820 | . . 3 ⊢ ℝ ∈ V | |
3 | prex 5325 | . . 3 ⊢ {+∞, -∞} ∈ V | |
4 | 2, 3 | unex 7531 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 {cpr 4543 ℝcr 10728 +∞cpnf 10864 -∞cmnf 10865 ℝ*cxr 10866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-sn 4542 df-pr 4544 df-uni 4820 df-xr 10871 |
This theorem is referenced by: ixxval 12943 ixxf 12945 ixxex 12946 limsuple 15039 limsuplt 15040 limsupbnd1 15043 prdsds 16969 letsr 18099 xrsbas 20379 xrsadd 20380 xrsmul 20381 xrsle 20383 xrs1mnd 20401 xrs10 20402 xrs1cmn 20403 xrge0subm 20404 xrge0cmn 20405 xrsds 20406 znle 20501 leordtval2 22109 lecldbas 22116 ispsmet 23202 isxmet 23222 imasdsf1olem 23271 blfvalps 23281 nmoffn 23609 nmofval 23612 xrsxmet 23706 xrge0gsumle 23730 xrge0tsms 23731 xrlimcnp 25851 xrge00 31014 xrge0tsmsd 31036 xrhval 31680 icof 42432 elicores 42746 fuzxrpmcn 43044 gsumge0cl 43584 ovnval2b 43765 volicorescl 43766 ovnsubaddlem1 43783 |
Copyright terms: Public domain | W3C validator |