Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 11093 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 11042 | . . 3 ⊢ ℝ ∈ V | |
3 | prex 5370 | . . 3 ⊢ {+∞, -∞} ∈ V | |
4 | 2, 3 | unex 7638 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 ∪ cun 3895 {cpr 4573 ℝcr 10950 +∞cpnf 11086 -∞cmnf 11087 ℝ*cxr 11088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-sn 4572 df-pr 4574 df-uni 4851 df-xr 11093 |
This theorem is referenced by: ixxval 13167 ixxf 13169 ixxex 13170 limsuple 15266 limsuplt 15267 limsupbnd1 15270 prdsds 17252 letsr 18388 xrsbas 20697 xrsadd 20698 xrsmul 20699 xrsle 20701 xrs1mnd 20719 xrs10 20720 xrs1cmn 20721 xrge0subm 20722 xrge0cmn 20723 xrsds 20724 znle 20823 leordtval2 22446 lecldbas 22453 ispsmet 23540 isxmet 23560 imasdsf1olem 23609 blfvalps 23619 nmoffn 23958 nmofval 23961 xrsxmet 24055 xrge0gsumle 24079 xrge0tsms 24080 xrlimcnp 26201 xrge00 31430 xrge0tsmsd 31452 xrhval 32108 icof 43000 elicores 43321 fuzxrpmcn 43619 gsumge0cl 44160 ovnval2b 44341 volicorescl 44342 ovnsubaddlem1 44359 |
Copyright terms: Public domain | W3C validator |