![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 11296 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 11243 | . . 3 ⊢ ℝ ∈ V | |
3 | prex 5442 | . . 3 ⊢ {+∞, -∞} ∈ V | |
4 | 2, 3 | unex 7762 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 ∪ cun 3960 {cpr 4632 ℝcr 11151 +∞cpnf 11289 -∞cmnf 11290 ℝ*cxr 11291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-sn 4631 df-pr 4633 df-uni 4912 df-xr 11296 |
This theorem is referenced by: ixxval 13391 ixxf 13393 ixxex 13394 limsuple 15510 limsuplt 15511 limsupbnd1 15514 prdsds 17510 letsr 18650 xrsbas 21413 xrsadd 21414 xrsmul 21415 xrsle 21417 xrs1mnd 21439 xrs10 21440 xrs1cmn 21441 xrge0subm 21442 xrge0cmn 21443 xrsds 21444 znle 21568 leordtval2 23235 lecldbas 23242 ispsmet 24329 isxmet 24349 imasdsf1olem 24398 blfvalps 24408 nmoffn 24747 nmofval 24750 xrsxmet 24844 xrge0gsumle 24868 xrge0tsms 24869 xrlimcnp 27025 xrge00 32999 xrge0tsmsd 33047 xrhval 33980 ltex 42264 leex 42265 icof 45161 elicores 45485 fuzxrpmcn 45783 gsumge0cl 46326 ovnval2b 46507 volicorescl 46508 ovnsubaddlem1 46525 |
Copyright terms: Public domain | W3C validator |