| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 11172 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 11119 | . . 3 ⊢ ℝ ∈ V | |
| 3 | prex 5379 | . . 3 ⊢ {+∞, -∞} ∈ V | |
| 4 | 2, 3 | unex 7684 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 {cpr 4581 ℝcr 11027 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 df-xr 11172 |
| This theorem is referenced by: ixxval 13274 ixxf 13276 ixxex 13277 limsuple 15403 limsuplt 15404 limsupbnd1 15407 prdsds 17386 xrsle 17526 xrsbas 17528 letsr 18517 xrsadd 21310 xrsmul 21311 xrsds 21334 xrs1mnd 21365 xrs10 21366 xrs1cmn 21367 xrge0subm 21368 xrge0cmn 21369 znle 21461 leordtval2 23115 lecldbas 23122 ispsmet 24208 isxmet 24228 imasdsf1olem 24277 blfvalps 24287 nmoffn 24615 nmofval 24618 xrsxmet 24714 xrge0gsumle 24738 xrge0tsms 24739 xrlimcnp 26894 xrge00 32981 xrge0tsmsd 33028 xrhval 33984 ltex 42218 leex 42219 icof 45197 elicores 45515 fuzxrpmcn 45810 gsumge0cl 46353 ovnval2b 46534 volicorescl 46535 ovnsubaddlem1 46552 |
| Copyright terms: Public domain | W3C validator |