| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 11212 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 11159 | . . 3 ⊢ ℝ ∈ V | |
| 3 | prex 5392 | . . 3 ⊢ {+∞, -∞} ∈ V | |
| 4 | 2, 3 | unex 7720 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {cpr 4591 ℝcr 11067 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-xr 11212 |
| This theorem is referenced by: ixxval 13314 ixxf 13316 ixxex 13317 limsuple 15444 limsuplt 15445 limsupbnd1 15448 prdsds 17427 letsr 18552 xrsbas 21295 xrsadd 21296 xrsmul 21297 xrsle 21299 xrs1mnd 21321 xrs10 21322 xrs1cmn 21323 xrge0subm 21324 xrge0cmn 21325 xrsds 21326 znle 21446 leordtval2 23099 lecldbas 23106 ispsmet 24192 isxmet 24212 imasdsf1olem 24261 blfvalps 24271 nmoffn 24599 nmofval 24602 xrsxmet 24698 xrge0gsumle 24722 xrge0tsms 24723 xrlimcnp 26878 xrge00 32953 xrge0tsmsd 33002 xrhval 34008 ltex 42233 leex 42234 icof 45213 elicores 45531 fuzxrpmcn 45826 gsumge0cl 46369 ovnval2b 46550 volicorescl 46551 ovnsubaddlem1 46568 |
| Copyright terms: Public domain | W3C validator |