| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 11157 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 11104 | . . 3 ⊢ ℝ ∈ V | |
| 3 | prex 5377 | . . 3 ⊢ {+∞, -∞} ∈ V | |
| 4 | 2, 3 | unex 7683 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {cpr 4577 ℝcr 11012 +∞cpnf 11150 -∞cmnf 11151 ℝ*cxr 11152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-uni 4859 df-xr 11157 |
| This theorem is referenced by: ixxval 13255 ixxf 13257 ixxex 13258 limsuple 15387 limsuplt 15388 limsupbnd1 15391 prdsds 17370 xrsle 17510 xrsbas 17512 letsr 18501 xrsadd 21324 xrsmul 21325 xrsds 21348 xrs1mnd 21379 xrs10 21380 xrs1cmn 21381 xrge0subm 21382 xrge0cmn 21383 znle 21475 leordtval2 23128 lecldbas 23135 ispsmet 24220 isxmet 24240 imasdsf1olem 24289 blfvalps 24299 nmoffn 24627 nmofval 24630 xrsxmet 24726 xrge0gsumle 24750 xrge0tsms 24751 xrlimcnp 26906 xrge00 33002 xrge0tsmsd 33049 xrhval 34052 ltex 42363 leex 42364 icof 45340 elicores 45657 fuzxrpmcn 45950 gsumge0cl 46493 ovnval2b 46674 volicorescl 46675 ovnsubaddlem1 46692 |
| Copyright terms: Public domain | W3C validator |