| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 11219 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 11166 | . . 3 ⊢ ℝ ∈ V | |
| 3 | prex 5395 | . . 3 ⊢ {+∞, -∞} ∈ V | |
| 4 | 2, 3 | unex 7723 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {cpr 4594 ℝcr 11074 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-xr 11219 |
| This theorem is referenced by: ixxval 13321 ixxf 13323 ixxex 13324 limsuple 15451 limsuplt 15452 limsupbnd1 15455 prdsds 17434 letsr 18559 xrsbas 21302 xrsadd 21303 xrsmul 21304 xrsle 21306 xrs1mnd 21328 xrs10 21329 xrs1cmn 21330 xrge0subm 21331 xrge0cmn 21332 xrsds 21333 znle 21453 leordtval2 23106 lecldbas 23113 ispsmet 24199 isxmet 24219 imasdsf1olem 24268 blfvalps 24278 nmoffn 24606 nmofval 24609 xrsxmet 24705 xrge0gsumle 24729 xrge0tsms 24730 xrlimcnp 26885 xrge00 32960 xrge0tsmsd 33009 xrhval 34015 ltex 42240 leex 42241 icof 45220 elicores 45538 fuzxrpmcn 45833 gsumge0cl 46376 ovnval2b 46557 volicorescl 46558 ovnsubaddlem1 46575 |
| Copyright terms: Public domain | W3C validator |