| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 11273 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 11220 | . . 3 ⊢ ℝ ∈ V | |
| 3 | prex 5407 | . . 3 ⊢ {+∞, -∞} ∈ V | |
| 4 | 2, 3 | unex 7738 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {cpr 4603 ℝcr 11128 +∞cpnf 11266 -∞cmnf 11267 ℝ*cxr 11268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-xr 11273 |
| This theorem is referenced by: ixxval 13370 ixxf 13372 ixxex 13373 limsuple 15494 limsuplt 15495 limsupbnd1 15498 prdsds 17478 letsr 18603 xrsbas 21346 xrsadd 21347 xrsmul 21348 xrsle 21350 xrs1mnd 21372 xrs10 21373 xrs1cmn 21374 xrge0subm 21375 xrge0cmn 21376 xrsds 21377 znle 21497 leordtval2 23150 lecldbas 23157 ispsmet 24243 isxmet 24263 imasdsf1olem 24312 blfvalps 24322 nmoffn 24650 nmofval 24653 xrsxmet 24749 xrge0gsumle 24773 xrge0tsms 24774 xrlimcnp 26930 xrge00 33007 xrge0tsmsd 33056 xrhval 34049 ltex 42296 leex 42297 icof 45243 elicores 45562 fuzxrpmcn 45857 gsumge0cl 46400 ovnval2b 46581 volicorescl 46582 ovnsubaddlem1 46599 |
| Copyright terms: Public domain | W3C validator |