![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 11328 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 11275 | . . 3 ⊢ ℝ ∈ V | |
3 | prex 5452 | . . 3 ⊢ {+∞, -∞} ∈ V | |
4 | 2, 3 | unex 7779 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {cpr 4650 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-xr 11328 |
This theorem is referenced by: ixxval 13415 ixxf 13417 ixxex 13418 limsuple 15524 limsuplt 15525 limsupbnd1 15528 prdsds 17524 letsr 18663 xrsbas 21419 xrsadd 21420 xrsmul 21421 xrsle 21423 xrs1mnd 21445 xrs10 21446 xrs1cmn 21447 xrge0subm 21448 xrge0cmn 21449 xrsds 21450 znle 21574 leordtval2 23241 lecldbas 23248 ispsmet 24335 isxmet 24355 imasdsf1olem 24404 blfvalps 24414 nmoffn 24753 nmofval 24756 xrsxmet 24850 xrge0gsumle 24874 xrge0tsms 24875 xrlimcnp 27029 xrge00 32998 xrge0tsmsd 33041 xrhval 33964 ltex 42240 leex 42241 icof 45126 elicores 45451 fuzxrpmcn 45749 gsumge0cl 46292 ovnval2b 46473 volicorescl 46474 ovnsubaddlem1 46491 |
Copyright terms: Public domain | W3C validator |