| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 11147 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 11094 | . . 3 ⊢ ℝ ∈ V | |
| 3 | prex 5375 | . . 3 ⊢ {+∞, -∞} ∈ V | |
| 4 | 2, 3 | unex 7677 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 {cpr 4578 ℝcr 11002 +∞cpnf 11140 -∞cmnf 11141 ℝ*cxr 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 df-xr 11147 |
| This theorem is referenced by: ixxval 13250 ixxf 13252 ixxex 13253 limsuple 15382 limsuplt 15383 limsupbnd1 15386 prdsds 17365 xrsle 17505 xrsbas 17507 letsr 18496 xrsadd 21320 xrsmul 21321 xrsds 21344 xrs1mnd 21375 xrs10 21376 xrs1cmn 21377 xrge0subm 21378 xrge0cmn 21379 znle 21471 leordtval2 23125 lecldbas 23132 ispsmet 24217 isxmet 24237 imasdsf1olem 24286 blfvalps 24296 nmoffn 24624 nmofval 24627 xrsxmet 24723 xrge0gsumle 24747 xrge0tsms 24748 xrlimcnp 26903 xrge00 32990 xrge0tsmsd 33037 xrhval 34026 ltex 42277 leex 42278 icof 45255 elicores 45572 fuzxrpmcn 45865 gsumge0cl 46408 ovnval2b 46589 volicorescl 46590 ovnsubaddlem1 46607 |
| Copyright terms: Public domain | W3C validator |