Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 10944 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 10893 | . . 3 ⊢ ℝ ∈ V | |
3 | prex 5350 | . . 3 ⊢ {+∞, -∞} ∈ V | |
4 | 2, 3 | unex 7574 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {cpr 4560 ℝcr 10801 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-xr 10944 |
This theorem is referenced by: ixxval 13016 ixxf 13018 ixxex 13019 limsuple 15115 limsuplt 15116 limsupbnd1 15119 prdsds 17092 letsr 18226 xrsbas 20526 xrsadd 20527 xrsmul 20528 xrsle 20530 xrs1mnd 20548 xrs10 20549 xrs1cmn 20550 xrge0subm 20551 xrge0cmn 20552 xrsds 20553 znle 20652 leordtval2 22271 lecldbas 22278 ispsmet 23365 isxmet 23385 imasdsf1olem 23434 blfvalps 23444 nmoffn 23781 nmofval 23784 xrsxmet 23878 xrge0gsumle 23902 xrge0tsms 23903 xrlimcnp 26023 xrge00 31197 xrge0tsmsd 31219 xrhval 31868 icof 42648 elicores 42961 fuzxrpmcn 43259 gsumge0cl 43799 ovnval2b 43980 volicorescl 43981 ovnsubaddlem1 43998 |
Copyright terms: Public domain | W3C validator |