Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrex | Structured version Visualization version GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 11013 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 10962 | . . 3 ⊢ ℝ ∈ V | |
3 | prex 5355 | . . 3 ⊢ {+∞, -∞} ∈ V | |
4 | 2, 3 | unex 7596 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {cpr 4563 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-xr 11013 |
This theorem is referenced by: ixxval 13087 ixxf 13089 ixxex 13090 limsuple 15187 limsuplt 15188 limsupbnd1 15191 prdsds 17175 letsr 18311 xrsbas 20614 xrsadd 20615 xrsmul 20616 xrsle 20618 xrs1mnd 20636 xrs10 20637 xrs1cmn 20638 xrge0subm 20639 xrge0cmn 20640 xrsds 20641 znle 20740 leordtval2 22363 lecldbas 22370 ispsmet 23457 isxmet 23477 imasdsf1olem 23526 blfvalps 23536 nmoffn 23875 nmofval 23878 xrsxmet 23972 xrge0gsumle 23996 xrge0tsms 23997 xrlimcnp 26118 xrge00 31295 xrge0tsmsd 31317 xrhval 31968 icof 42759 elicores 43071 fuzxrpmcn 43369 gsumge0cl 43909 ovnval2b 44090 volicorescl 44091 ovnsubaddlem1 44108 |
Copyright terms: Public domain | W3C validator |