MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelxr Structured version   Visualization version   GIF version

Theorem ltrelxr 11235
Description: "Less than" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr < ⊆ (ℝ* × ℝ*)

Proof of Theorem ltrelxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 11213 . 2 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2 df-3an 1088 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 5174 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
4 opabssxp 5731 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
53, 4eqsstri 3993 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
6 rexpssxrxp 11219 . . . 4 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
75, 6sstri 3956 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ* × ℝ*)
8 ressxr 11218 . . . . . 6 ℝ ⊆ ℝ*
9 snsspr2 4779 . . . . . . 7 {-∞} ⊆ {+∞, -∞}
10 ssun2 4142 . . . . . . . 8 {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞})
11 df-xr 11212 . . . . . . . 8 * = (ℝ ∪ {+∞, -∞})
1210, 11sseqtrri 3996 . . . . . . 7 {+∞, -∞} ⊆ ℝ*
139, 12sstri 3956 . . . . . 6 {-∞} ⊆ ℝ*
148, 13unssi 4154 . . . . 5 (ℝ ∪ {-∞}) ⊆ ℝ*
15 snsspr1 4778 . . . . . 6 {+∞} ⊆ {+∞, -∞}
1615, 12sstri 3956 . . . . 5 {+∞} ⊆ ℝ*
17 xpss12 5653 . . . . 5 (((ℝ ∪ {-∞}) ⊆ ℝ* ∧ {+∞} ⊆ ℝ*) → ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*))
1814, 16, 17mp2an 692 . . . 4 ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*)
19 xpss12 5653 . . . . 5 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
2013, 8, 19mp2an 692 . . . 4 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
2118, 20unssi 4154 . . 3 (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ⊆ (ℝ* × ℝ*)
227, 21unssi 4154 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) ⊆ (ℝ* × ℝ*)
231, 22eqsstri 3993 1 < ⊆ (ℝ* × ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086  wcel 2109  cun 3912  wss 3914  {csn 4589  {cpr 4591   class class class wbr 5107  {copab 5169   × cxp 5636  cr 11067   < cltrr 11072  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-pr 4592  df-opab 5170  df-xp 5644  df-xr 11212  df-ltxr 11213
This theorem is referenced by:  ltrel  11236  dfle2  13107  dflt2  13108  itg2gt0cn  37669  ltex  42233  et-ltneverrefl  46869  natglobalincr  46875  iccdisj2  48885
  Copyright terms: Public domain W3C validator