Step | Hyp | Ref
| Expression |
1 | | df-ltxr 11014 |
. 2
⊢ < =
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪
{-∞}) × {+∞}) ∪ ({-∞} ×
ℝ))) |
2 | | df-3an 1088 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 <ℝ 𝑦)) |
3 | 2 | opabbii 5141 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 <ℝ 𝑦)} |
4 | | opabssxp 5679 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 <ℝ 𝑦)} ⊆ (ℝ ×
ℝ) |
5 | 3, 4 | eqsstri 3955 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ⊆ (ℝ ×
ℝ) |
6 | | rexpssxrxp 11020 |
. . . 4
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
7 | 5, 6 | sstri 3930 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ⊆ (ℝ*
× ℝ*) |
8 | | ressxr 11019 |
. . . . . 6
⊢ ℝ
⊆ ℝ* |
9 | | snsspr2 4748 |
. . . . . . 7
⊢
{-∞} ⊆ {+∞, -∞} |
10 | | ssun2 4107 |
. . . . . . . 8
⊢
{+∞, -∞} ⊆ (ℝ ∪ {+∞,
-∞}) |
11 | | df-xr 11013 |
. . . . . . . 8
⊢
ℝ* = (ℝ ∪ {+∞,
-∞}) |
12 | 10, 11 | sseqtrri 3958 |
. . . . . . 7
⊢
{+∞, -∞} ⊆ ℝ* |
13 | 9, 12 | sstri 3930 |
. . . . . 6
⊢
{-∞} ⊆ ℝ* |
14 | 8, 13 | unssi 4119 |
. . . . 5
⊢ (ℝ
∪ {-∞}) ⊆ ℝ* |
15 | | snsspr1 4747 |
. . . . . 6
⊢
{+∞} ⊆ {+∞, -∞} |
16 | 15, 12 | sstri 3930 |
. . . . 5
⊢
{+∞} ⊆ ℝ* |
17 | | xpss12 5604 |
. . . . 5
⊢
(((ℝ ∪ {-∞}) ⊆ ℝ* ∧
{+∞} ⊆ ℝ*) → ((ℝ ∪ {-∞})
× {+∞}) ⊆ (ℝ* ×
ℝ*)) |
18 | 14, 16, 17 | mp2an 689 |
. . . 4
⊢ ((ℝ
∪ {-∞}) × {+∞}) ⊆ (ℝ* ×
ℝ*) |
19 | | xpss12 5604 |
. . . . 5
⊢
(({-∞} ⊆ ℝ* ∧ ℝ ⊆
ℝ*) → ({-∞} × ℝ) ⊆
(ℝ* × ℝ*)) |
20 | 13, 8, 19 | mp2an 689 |
. . . 4
⊢
({-∞} × ℝ) ⊆ (ℝ* ×
ℝ*) |
21 | 18, 20 | unssi 4119 |
. . 3
⊢
(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞}
× ℝ)) ⊆ (ℝ* ×
ℝ*) |
22 | 7, 21 | unssi 4119 |
. 2
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪
{-∞}) × {+∞}) ∪ ({-∞} × ℝ))) ⊆
(ℝ* × ℝ*) |
23 | 1, 22 | eqsstri 3955 |
1
⊢ <
⊆ (ℝ* × ℝ*) |