Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfxr | Structured version Visualization version GIF version |
Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mnfxr | ⊢ -∞ ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnf 10996 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
2 | pnfex 11012 | . . . . . 6 ⊢ +∞ ∈ V | |
3 | 2 | pwex 5306 | . . . . 5 ⊢ 𝒫 +∞ ∈ V |
4 | 1, 3 | eqeltri 2836 | . . . 4 ⊢ -∞ ∈ V |
5 | 4 | prid2 4704 | . . 3 ⊢ -∞ ∈ {+∞, -∞} |
6 | elun2 4115 | . . 3 ⊢ (-∞ ∈ {+∞, -∞} → -∞ ∈ (ℝ ∪ {+∞, -∞})) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ -∞ ∈ (ℝ ∪ {+∞, -∞}) |
8 | df-xr 10997 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
9 | 7, 8 | eleqtrri 2839 | 1 ⊢ -∞ ∈ ℝ* |
Copyright terms: Public domain | W3C validator |