Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2lem Structured version   Visualization version   GIF version

Theorem climxlim2lem 45371
Description: In this lemma for climxlim2 45372 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2lem.1 (𝜑𝑀 ∈ ℤ)
climxlim2lem.2 𝑍 = (ℤ𝑀)
climxlim2lem.3 (𝜑𝐹:𝑍⟶ℝ*)
climxlim2lem.4 (𝜑𝐹:𝑍⟶ℂ)
climxlim2lem.5 (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2lem (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2lem
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxlim2lem.5 . . . 4 (𝜑𝐹𝐴)
21adantr 479 . . 3 ((𝜑𝐴 ∈ ℝ) → 𝐹𝐴)
3 climxlim2lem.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 479 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
5 climxlim2lem.2 . . . 4 𝑍 = (ℤ𝑀)
6 climxlim2lem.3 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
76adantr 479 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
8 simpr 483 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
94, 5, 7, 8xlimclim2 45366 . . 3 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
102, 9mpbird 256 . 2 ((𝜑𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
11 climxlim2lem.4 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1211ffvelcdmda 7093 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1312anim1i 613 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
1413adantllr 717 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
156adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → 𝐹:𝑍⟶ℝ*)
1615ffvelcdmda 7093 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
17 simplr 767 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
18 eleq1 2813 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦 ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
19 neeq1 2992 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦𝐴 ↔ (𝐹𝑘) ≠ 𝐴))
2018, 19anbi12d 630 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) ↔ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴)))
21 fvoveq1 7442 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (abs‘(𝑦𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2221breq2d 5161 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2320, 22imbi12d 343 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑘) → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))))
2423rspcva 3604 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2516, 17, 24syl2anc 582 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2625adantr 479 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2714, 26mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
2827ex 411 . . . . . . 7 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2928ralrimiva 3135 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
3029ad4ant14 750 . . . . 5 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
31 climcl 15479 . . . . . . . 8 (𝐹𝐴𝐴 ∈ ℂ)
321, 31syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3332adantr 479 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simpr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ¬ 𝐴 ∈ ℝ)
35 prfi 9348 . . . . . . 7 {+∞, -∞} ∈ Fin
3635a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → {+∞, -∞} ∈ Fin)
37 df-xr 11284 . . . . . 6 * = (ℝ ∪ {+∞, -∞})
3833, 34, 36, 37cnrefiisp 45356 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
3930, 38reximddv3 3161 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
40 nfv 1909 . . . . . . . . . 10 𝑘(𝜑𝑥 ∈ ℝ+)
41 nfra1 3271 . . . . . . . . . 10 𝑘𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
4240, 41nfan 1894 . . . . . . . . 9 𝑘((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
43 nfv 1909 . . . . . . . . 9 𝑘 𝑗𝑍
4442, 43nfan 1894 . . . . . . . 8 𝑘(((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍)
45 nfra1 3271 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
4644, 45nfan 1894 . . . . . . 7 𝑘((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
47 simpll 765 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
485uztrn2 12874 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4948adantll 712 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
50 rspa 3235 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
5147, 49, 50syl2anc 582 . . . . . . . . . . 11 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
52 neqne 2937 . . . . . . . . . . 11 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
5351, 52impel 504 . . . . . . . . . 10 ((((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5453ad5ant2345 1367 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5554adantllr 717 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
56 rspa 3235 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5756adantll 712 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5811ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℂ)
5948adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6058, 59ffvelcdmd 7094 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6160adantlr 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6232ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
6361, 62subcld 11603 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
6463abscld 15419 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
6564adantl3r 748 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
66 simpr 483 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6766ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6867rpred 13051 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
6965, 68ltnled 11393 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
7057, 69mpbid 231 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7170adantl3r 748 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7271adantr 479 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7355, 72condan 816 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
7446, 73ralrimia 3245 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
75 nfcv 2891 . . . . . . . . . . 11 𝑘𝐹
7675, 3, 5, 11climuz 45270 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
771, 76mpbid 231 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
7877simprd 494 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
7978r19.21bi 3238 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8079adantr 479 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8174, 80reximddv3 3161 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8281adantllr 717 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8339, 82rexlimddv2 45349 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
84 nfv 1909 . . . . 5 𝑘((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍)
85 nfra1 3271 . . . . 5 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴
8684, 85nfan 1894 . . . 4 𝑘(((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
876ad3antrrr 728 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹:𝑍⟶ℝ*)
88 simplr 767 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝑗𝑍)
895uzid3 44955 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
90 fveq2 6896 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
9190eqeq1d 2727 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) = 𝐴 ↔ (𝐹𝑗) = 𝐴))
9291rspcva 3604 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
9389, 92sylan 578 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
94933adant1 1127 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
956ffvelcdmda 7093 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
96953adant3 1129 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) ∈ ℝ*)
9794, 96eqeltrrd 2826 . . . . 5 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
9897ad4ant134 1171 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
99 rspa 3235 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10099adantll 712 . . . 4 (((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10186, 75, 5, 87, 88, 98, 100xlimconst2 45361 . . 3 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹~~>*𝐴)
10283, 101rexlimddv2 45349 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
10310, 102pm2.61dan 811 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {cpr 4632   class class class wbr 5149  wf 6545  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  +∞cpnf 11277  -∞cmnf 11278  *cxr 11279   < clt 11280  cle 11281  cmin 11476  cz 12591  cuz 12855  +crp 13009  abscabs 15217  cli 15464  ~~>*clsxlim 45344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fl 13793  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-starv 17251  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-rest 17407  df-topn 17408  df-topgen 17428  df-ordt 17486  df-ps 18561  df-tsr 18562  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-lm 23177  df-xms 24270  df-ms 24271  df-xlim 45345
This theorem is referenced by:  climxlim2  45372
  Copyright terms: Public domain W3C validator