Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2lem Structured version   Visualization version   GIF version

Theorem climxlim2lem 42119
Description: In this lemma for climxlim2 42120 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2lem.1 (𝜑𝑀 ∈ ℤ)
climxlim2lem.2 𝑍 = (ℤ𝑀)
climxlim2lem.3 (𝜑𝐹:𝑍⟶ℝ*)
climxlim2lem.4 (𝜑𝐹:𝑍⟶ℂ)
climxlim2lem.5 (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2lem (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2lem
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxlim2lem.5 . . . 4 (𝜑𝐹𝐴)
21adantr 483 . . 3 ((𝜑𝐴 ∈ ℝ) → 𝐹𝐴)
3 climxlim2lem.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 483 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
5 climxlim2lem.2 . . . 4 𝑍 = (ℤ𝑀)
6 climxlim2lem.3 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
76adantr 483 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
8 simpr 487 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
94, 5, 7, 8xlimclim2 42114 . . 3 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
102, 9mpbird 259 . 2 ((𝜑𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
11 climxlim2lem.4 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1211ffvelrnda 6845 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1312anim1i 616 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
1413adantllr 717 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
156adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → 𝐹:𝑍⟶ℝ*)
1615ffvelrnda 6845 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
17 simplr 767 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
18 eleq1 2900 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦 ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
19 neeq1 3078 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦𝐴 ↔ (𝐹𝑘) ≠ 𝐴))
2018, 19anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) ↔ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴)))
21 fvoveq1 7173 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (abs‘(𝑦𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2221breq2d 5070 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2320, 22imbi12d 347 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑘) → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))))
2423rspcva 3620 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2516, 17, 24syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2625adantr 483 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2714, 26mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
2827ex 415 . . . . . . 7 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2928ralrimiva 3182 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
3029ad4ant14 750 . . . . 5 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
31 climcl 14850 . . . . . . . 8 (𝐹𝐴𝐴 ∈ ℂ)
321, 31syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3332adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simpr 487 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ¬ 𝐴 ∈ ℝ)
35 prfi 8787 . . . . . . 7 {+∞, -∞} ∈ Fin
3635a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → {+∞, -∞} ∈ Fin)
37 df-xr 10673 . . . . . 6 * = (ℝ ∪ {+∞, -∞})
3833, 34, 36, 37cnrefiisp 42104 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
3930, 38reximddv3 41413 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
40 nfv 1911 . . . . . . . . . 10 𝑘(𝜑𝑥 ∈ ℝ+)
41 nfra1 3219 . . . . . . . . . 10 𝑘𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
4240, 41nfan 1896 . . . . . . . . 9 𝑘((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
43 nfv 1911 . . . . . . . . 9 𝑘 𝑗𝑍
4442, 43nfan 1896 . . . . . . . 8 𝑘(((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍)
45 nfra1 3219 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
4644, 45nfan 1896 . . . . . . 7 𝑘((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
47 simpll 765 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
485uztrn2 12256 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4948adantll 712 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
50 rspa 3206 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
5147, 49, 50syl2anc 586 . . . . . . . . . . 11 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
52 neqne 3024 . . . . . . . . . . 11 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
5351, 52impel 508 . . . . . . . . . 10 ((((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5453ad5ant2345 1366 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5554adantllr 717 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
56 rspa 3206 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5756adantll 712 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5811ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℂ)
5948adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6058, 59ffvelrnd 6846 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6160adantlr 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6232ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
6361, 62subcld 10991 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
6463abscld 14790 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
6564adantl3r 748 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
66 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6766ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6867rpred 12425 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
6965, 68ltnled 10781 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
7057, 69mpbid 234 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7170adantl3r 748 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7271adantr 483 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7355, 72condan 816 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
7446, 73ralrimia 41391 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
75 nfcv 2977 . . . . . . . . . . 11 𝑘𝐹
7675, 3, 5, 11climuz 42018 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
771, 76mpbid 234 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
7877simprd 498 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
7978r19.21bi 3208 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8079adantr 483 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8174, 80reximddv3 41413 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8281adantllr 717 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8339, 82rexlimddv2 42097 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
84 nfv 1911 . . . . 5 𝑘((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍)
85 nfra1 3219 . . . . 5 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴
8684, 85nfan 1896 . . . 4 𝑘(((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
876ad3antrrr 728 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹:𝑍⟶ℝ*)
88 simplr 767 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝑗𝑍)
895uzid3 41702 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
90 fveq2 6664 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
9190eqeq1d 2823 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) = 𝐴 ↔ (𝐹𝑗) = 𝐴))
9291rspcva 3620 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
9389, 92sylan 582 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
94933adant1 1126 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
956ffvelrnda 6845 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
96953adant3 1128 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) ∈ ℝ*)
9794, 96eqeltrrd 2914 . . . . 5 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
9897ad4ant134 1170 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
99 rspa 3206 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10099adantll 712 . . . 4 (((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10186, 75, 5, 87, 88, 98, 100xlimconst2 42109 . . 3 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹~~>*𝐴)
10283, 101rexlimddv2 42097 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
10310, 102pm2.61dan 811 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {cpr 4562   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  cr 10530  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  cmin 10864  cz 11975  cuz 12237  +crp 12383  abscabs 14587  cli 14835  ~~>*clsxlim 42092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-lm 21831  df-xms 22924  df-ms 22925  df-xlim 42093
This theorem is referenced by:  climxlim2  42120
  Copyright terms: Public domain W3C validator