Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2lem Structured version   Visualization version   GIF version

Theorem climxlim2lem 45801
Description: In this lemma for climxlim2 45802 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2lem.1 (𝜑𝑀 ∈ ℤ)
climxlim2lem.2 𝑍 = (ℤ𝑀)
climxlim2lem.3 (𝜑𝐹:𝑍⟶ℝ*)
climxlim2lem.4 (𝜑𝐹:𝑍⟶ℂ)
climxlim2lem.5 (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2lem (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2lem
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxlim2lem.5 . . . 4 (𝜑𝐹𝐴)
21adantr 480 . . 3 ((𝜑𝐴 ∈ ℝ) → 𝐹𝐴)
3 climxlim2lem.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 480 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
5 climxlim2lem.2 . . . 4 𝑍 = (ℤ𝑀)
6 climxlim2lem.3 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
76adantr 480 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
8 simpr 484 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
94, 5, 7, 8xlimclim2 45796 . . 3 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
102, 9mpbird 257 . 2 ((𝜑𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
11 climxlim2lem.4 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1211ffvelcdmda 7104 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1312anim1i 615 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
1413adantllr 719 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
156adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → 𝐹:𝑍⟶ℝ*)
1615ffvelcdmda 7104 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
17 simplr 769 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
18 eleq1 2827 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦 ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
19 neeq1 3001 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦𝐴 ↔ (𝐹𝑘) ≠ 𝐴))
2018, 19anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) ↔ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴)))
21 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (abs‘(𝑦𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2221breq2d 5160 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2320, 22imbi12d 344 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑘) → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))))
2423rspcva 3620 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2516, 17, 24syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2625adantr 480 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2714, 26mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
2827ex 412 . . . . . . 7 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2928ralrimiva 3144 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
3029ad4ant14 752 . . . . 5 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
31 climcl 15532 . . . . . . . 8 (𝐹𝐴𝐴 ∈ ℂ)
321, 31syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3332adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ¬ 𝐴 ∈ ℝ)
35 prfi 9361 . . . . . . 7 {+∞, -∞} ∈ Fin
3635a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → {+∞, -∞} ∈ Fin)
37 df-xr 11297 . . . . . 6 * = (ℝ ∪ {+∞, -∞})
3833, 34, 36, 37cnrefiisp 45786 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
3930, 38reximddv3 3170 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
40 nfv 1912 . . . . . . . . . 10 𝑘(𝜑𝑥 ∈ ℝ+)
41 nfra1 3282 . . . . . . . . . 10 𝑘𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
4240, 41nfan 1897 . . . . . . . . 9 𝑘((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
43 nfv 1912 . . . . . . . . 9 𝑘 𝑗𝑍
4442, 43nfan 1897 . . . . . . . 8 𝑘(((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍)
45 nfra1 3282 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
4644, 45nfan 1897 . . . . . . 7 𝑘((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
47 simpll 767 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
485uztrn2 12895 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4948adantll 714 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
50 rspa 3246 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
5147, 49, 50syl2anc 584 . . . . . . . . . . 11 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
52 neqne 2946 . . . . . . . . . . 11 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
5351, 52impel 505 . . . . . . . . . 10 ((((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5453ad5ant2345 1369 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5554adantllr 719 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
56 rspa 3246 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5756adantll 714 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5811ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℂ)
5948adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6058, 59ffvelcdmd 7105 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6160adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6232ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
6361, 62subcld 11618 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
6463abscld 15472 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
6564adantl3r 750 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
66 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6766ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6867rpred 13075 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
6965, 68ltnled 11406 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
7057, 69mpbid 232 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7170adantl3r 750 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7271adantr 480 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7355, 72condan 818 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
7446, 73ralrimia 3256 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
75 nfcv 2903 . . . . . . . . . . 11 𝑘𝐹
7675, 3, 5, 11climuz 45700 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
771, 76mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
7877simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
7978r19.21bi 3249 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8079adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8174, 80reximddv3 3170 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8281adantllr 719 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8339, 82rexlimddv2 45779 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
84 nfv 1912 . . . . 5 𝑘((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍)
85 nfra1 3282 . . . . 5 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴
8684, 85nfan 1897 . . . 4 𝑘(((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
876ad3antrrr 730 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹:𝑍⟶ℝ*)
88 simplr 769 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝑗𝑍)
895uzid3 45385 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
90 fveq2 6907 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
9190eqeq1d 2737 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) = 𝐴 ↔ (𝐹𝑗) = 𝐴))
9291rspcva 3620 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
9389, 92sylan 580 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
94933adant1 1129 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
956ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
96953adant3 1131 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) ∈ ℝ*)
9794, 96eqeltrrd 2840 . . . . 5 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
9897ad4ant134 1173 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
99 rspa 3246 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10099adantll 714 . . . 4 (((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10186, 75, 5, 87, 88, 98, 100xlimconst2 45791 . . 3 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹~~>*𝐴)
10283, 101rexlimddv2 45779 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
10310, 102pm2.61dan 813 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {cpr 4633   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  cmin 11490  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517  ~~>*clsxlim 45774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-lm 23253  df-xms 24346  df-ms 24347  df-xlim 45775
This theorem is referenced by:  climxlim2  45802
  Copyright terms: Public domain W3C validator