Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2lem Structured version   Visualization version   GIF version

Theorem climxlim2lem 42487
Description: In this lemma for climxlim2 42488 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2lem.1 (𝜑𝑀 ∈ ℤ)
climxlim2lem.2 𝑍 = (ℤ𝑀)
climxlim2lem.3 (𝜑𝐹:𝑍⟶ℝ*)
climxlim2lem.4 (𝜑𝐹:𝑍⟶ℂ)
climxlim2lem.5 (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2lem (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2lem
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxlim2lem.5 . . . 4 (𝜑𝐹𝐴)
21adantr 484 . . 3 ((𝜑𝐴 ∈ ℝ) → 𝐹𝐴)
3 climxlim2lem.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 484 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
5 climxlim2lem.2 . . . 4 𝑍 = (ℤ𝑀)
6 climxlim2lem.3 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
76adantr 484 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
8 simpr 488 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
94, 5, 7, 8xlimclim2 42482 . . 3 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
102, 9mpbird 260 . 2 ((𝜑𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
11 climxlim2lem.4 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1211ffvelrnda 6828 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1312anim1i 617 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
1413adantllr 718 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
156adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → 𝐹:𝑍⟶ℝ*)
1615ffvelrnda 6828 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
17 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
18 eleq1 2877 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦 ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
19 neeq1 3049 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦𝐴 ↔ (𝐹𝑘) ≠ 𝐴))
2018, 19anbi12d 633 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) ↔ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴)))
21 fvoveq1 7158 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (abs‘(𝑦𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2221breq2d 5042 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2320, 22imbi12d 348 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑘) → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))))
2423rspcva 3569 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2516, 17, 24syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2625adantr 484 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2714, 26mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
2827ex 416 . . . . . . 7 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2928ralrimiva 3149 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
3029ad4ant14 751 . . . . 5 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
31 climcl 14848 . . . . . . . 8 (𝐹𝐴𝐴 ∈ ℂ)
321, 31syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3332adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
34 simpr 488 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ¬ 𝐴 ∈ ℝ)
35 prfi 8777 . . . . . . 7 {+∞, -∞} ∈ Fin
3635a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → {+∞, -∞} ∈ Fin)
37 df-xr 10668 . . . . . 6 * = (ℝ ∪ {+∞, -∞})
3833, 34, 36, 37cnrefiisp 42472 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
3930, 38reximddv3 41788 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
40 nfv 1915 . . . . . . . . . 10 𝑘(𝜑𝑥 ∈ ℝ+)
41 nfra1 3183 . . . . . . . . . 10 𝑘𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
4240, 41nfan 1900 . . . . . . . . 9 𝑘((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
43 nfv 1915 . . . . . . . . 9 𝑘 𝑗𝑍
4442, 43nfan 1900 . . . . . . . 8 𝑘(((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍)
45 nfra1 3183 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
4644, 45nfan 1900 . . . . . . 7 𝑘((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
47 simpll 766 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
485uztrn2 12250 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4948adantll 713 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
50 rspa 3171 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
5147, 49, 50syl2anc 587 . . . . . . . . . . 11 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
52 neqne 2995 . . . . . . . . . . 11 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
5351, 52impel 509 . . . . . . . . . 10 ((((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5453ad5ant2345 1367 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5554adantllr 718 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
56 rspa 3171 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5756adantll 713 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5811ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℂ)
5948adantll 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6058, 59ffvelrnd 6829 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6160adantlr 714 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6232ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
6361, 62subcld 10986 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
6463abscld 14788 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
6564adantl3r 749 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
66 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6766ad3antrrr 729 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6867rpred 12419 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
6965, 68ltnled 10776 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
7057, 69mpbid 235 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7170adantl3r 749 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7271adantr 484 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7355, 72condan 817 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
7446, 73ralrimia 41767 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
75 nfcv 2955 . . . . . . . . . . 11 𝑘𝐹
7675, 3, 5, 11climuz 42386 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
771, 76mpbid 235 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
7877simprd 499 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
7978r19.21bi 3173 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8079adantr 484 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8174, 80reximddv3 41788 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8281adantllr 718 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8339, 82rexlimddv2 42465 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
84 nfv 1915 . . . . 5 𝑘((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍)
85 nfra1 3183 . . . . 5 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴
8684, 85nfan 1900 . . . 4 𝑘(((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
876ad3antrrr 729 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹:𝑍⟶ℝ*)
88 simplr 768 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝑗𝑍)
895uzid3 42072 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
90 fveq2 6645 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
9190eqeq1d 2800 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) = 𝐴 ↔ (𝐹𝑗) = 𝐴))
9291rspcva 3569 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
9389, 92sylan 583 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
94933adant1 1127 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
956ffvelrnda 6828 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
96953adant3 1129 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) ∈ ℝ*)
9794, 96eqeltrrd 2891 . . . . 5 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
9897ad4ant134 1171 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
99 rspa 3171 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10099adantll 713 . . . 4 (((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10186, 75, 5, 87, 88, 98, 100xlimconst2 42477 . . 3 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹~~>*𝐴)
10283, 101rexlimddv2 42465 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
10310, 102pm2.61dan 812 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {cpr 4527   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859  cz 11969  cuz 12231  +crp 12377  abscabs 14585  cli 14833  ~~>*clsxlim 42460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-ordt 16766  df-ps 17802  df-tsr 17803  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-lm 21834  df-xms 22927  df-ms 22928  df-xlim 42461
This theorem is referenced by:  climxlim2  42488
  Copyright terms: Public domain W3C validator