MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxr Structured version   Visualization version   GIF version

Theorem ssxr 11309
Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ssxr (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))

Proof of Theorem ssxr
StepHypRef Expression
1 df-pr 4609 . . . . . . 7 {+∞, -∞} = ({+∞} ∪ {-∞})
21ineq2i 4197 . . . . . 6 (𝐴 ∩ {+∞, -∞}) = (𝐴 ∩ ({+∞} ∪ {-∞}))
3 indi 4264 . . . . . 6 (𝐴 ∩ ({+∞} ∪ {-∞})) = ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞}))
42, 3eqtri 2759 . . . . 5 (𝐴 ∩ {+∞, -∞}) = ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞}))
5 disjsn 4692 . . . . . . . 8 ((𝐴 ∩ {+∞}) = ∅ ↔ ¬ +∞ ∈ 𝐴)
6 disjsn 4692 . . . . . . . 8 ((𝐴 ∩ {-∞}) = ∅ ↔ ¬ -∞ ∈ 𝐴)
75, 6anbi12i 628 . . . . . . 7 (((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
87biimpri 228 . . . . . 6 ((¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) → ((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅))
9 pm4.56 990 . . . . . 6 ((¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) ↔ ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
10 un00 4425 . . . . . 6 (((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅) ↔ ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞})) = ∅)
118, 9, 103imtr3i 291 . . . . 5 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞})) = ∅)
124, 11eqtrid 2783 . . . 4 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → (𝐴 ∩ {+∞, -∞}) = ∅)
13 reldisj 4433 . . . . 5 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅ ↔ 𝐴 ⊆ ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞})))
14 renfdisj 11300 . . . . . . . 8 (ℝ ∩ {+∞, -∞}) = ∅
15 disj3 4434 . . . . . . . 8 ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ℝ = (ℝ ∖ {+∞, -∞}))
1614, 15mpbi 230 . . . . . . 7 ℝ = (ℝ ∖ {+∞, -∞})
17 difun2 4461 . . . . . . 7 ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞}) = (ℝ ∖ {+∞, -∞})
1816, 17eqtr4i 2762 . . . . . 6 ℝ = ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞})
1918sseq2i 3993 . . . . 5 (𝐴 ⊆ ℝ ↔ 𝐴 ⊆ ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞}))
2013, 19bitr4di 289 . . . 4 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅ ↔ 𝐴 ⊆ ℝ))
2112, 20imbitrid 244 . . 3 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
2221orrd 863 . 2 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
23 df-xr 11278 . . 3 * = (ℝ ∪ {+∞, -∞})
2423sseq2i 3993 . 2 (𝐴 ⊆ ℝ*𝐴 ⊆ (ℝ ∪ {+∞, -∞}))
25 3orrot 1091 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴𝐴 ⊆ ℝ))
26 df-3or 1087 . . 3 ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴𝐴 ⊆ ℝ) ↔ ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
2725, 26bitri 275 . 2 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
2822, 24, 273imtr4i 292 1 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  {cpr 4608  cr 11133  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278
This theorem is referenced by:  xrsupss  13330  xrinfmss  13331  xrssre  45342
  Copyright terms: Public domain W3C validator