Proof of Theorem ssxr
Step | Hyp | Ref
| Expression |
1 | | df-pr 4568 |
. . . . . . 7
⊢
{+∞, -∞} = ({+∞} ∪ {-∞}) |
2 | 1 | ineq2i 4149 |
. . . . . 6
⊢ (𝐴 ∩ {+∞, -∞}) =
(𝐴 ∩ ({+∞} ∪
{-∞})) |
3 | | indi 4213 |
. . . . . 6
⊢ (𝐴 ∩ ({+∞} ∪
{-∞})) = ((𝐴 ∩
{+∞}) ∪ (𝐴 ∩
{-∞})) |
4 | 2, 3 | eqtri 2764 |
. . . . 5
⊢ (𝐴 ∩ {+∞, -∞}) =
((𝐴 ∩ {+∞}) ∪
(𝐴 ∩
{-∞})) |
5 | | disjsn 4651 |
. . . . . . . 8
⊢ ((𝐴 ∩ {+∞}) = ∅
↔ ¬ +∞ ∈ 𝐴) |
6 | | disjsn 4651 |
. . . . . . . 8
⊢ ((𝐴 ∩ {-∞}) = ∅
↔ ¬ -∞ ∈ 𝐴) |
7 | 5, 6 | anbi12i 628 |
. . . . . . 7
⊢ (((𝐴 ∩ {+∞}) = ∅
∧ (𝐴 ∩ {-∞})
= ∅) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴)) |
8 | 7 | biimpri 227 |
. . . . . 6
⊢ ((¬
+∞ ∈ 𝐴 ∧
¬ -∞ ∈ 𝐴)
→ ((𝐴 ∩
{+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) =
∅)) |
9 | | pm4.56 987 |
. . . . . 6
⊢ ((¬
+∞ ∈ 𝐴 ∧
¬ -∞ ∈ 𝐴)
↔ ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) |
10 | | un00 4382 |
. . . . . 6
⊢ (((𝐴 ∩ {+∞}) = ∅
∧ (𝐴 ∩ {-∞})
= ∅) ↔ ((𝐴 ∩
{+∞}) ∪ (𝐴 ∩
{-∞})) = ∅) |
11 | 8, 9, 10 | 3imtr3i 291 |
. . . . 5
⊢ (¬
(+∞ ∈ 𝐴 ∨
-∞ ∈ 𝐴) →
((𝐴 ∩ {+∞}) ∪
(𝐴 ∩ {-∞})) =
∅) |
12 | 4, 11 | eqtrid 2788 |
. . . 4
⊢ (¬
(+∞ ∈ 𝐴 ∨
-∞ ∈ 𝐴) →
(𝐴 ∩ {+∞,
-∞}) = ∅) |
13 | | reldisj 4391 |
. . . . 5
⊢ (𝐴 ⊆ (ℝ ∪
{+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅
↔ 𝐴 ⊆ ((ℝ
∪ {+∞, -∞}) ∖ {+∞, -∞}))) |
14 | | renfdisj 11081 |
. . . . . . . 8
⊢ (ℝ
∩ {+∞, -∞}) = ∅ |
15 | | disj3 4393 |
. . . . . . . 8
⊢ ((ℝ
∩ {+∞, -∞}) = ∅ ↔ ℝ = (ℝ ∖
{+∞, -∞})) |
16 | 14, 15 | mpbi 229 |
. . . . . . 7
⊢ ℝ =
(ℝ ∖ {+∞, -∞}) |
17 | | difun2 4420 |
. . . . . . 7
⊢ ((ℝ
∪ {+∞, -∞}) ∖ {+∞, -∞}) = (ℝ ∖
{+∞, -∞}) |
18 | 16, 17 | eqtr4i 2767 |
. . . . . 6
⊢ ℝ =
((ℝ ∪ {+∞, -∞}) ∖ {+∞,
-∞}) |
19 | 18 | sseq2i 3955 |
. . . . 5
⊢ (𝐴 ⊆ ℝ ↔ 𝐴 ⊆ ((ℝ ∪
{+∞, -∞}) ∖ {+∞, -∞})) |
20 | 13, 19 | bitr4di 289 |
. . . 4
⊢ (𝐴 ⊆ (ℝ ∪
{+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅
↔ 𝐴 ⊆
ℝ)) |
21 | 12, 20 | syl5ib 244 |
. . 3
⊢ (𝐴 ⊆ (ℝ ∪
{+∞, -∞}) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ)) |
22 | 21 | orrd 861 |
. 2
⊢ (𝐴 ⊆ (ℝ ∪
{+∞, -∞}) → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ)) |
23 | | df-xr 11059 |
. . 3
⊢
ℝ* = (ℝ ∪ {+∞,
-∞}) |
24 | 23 | sseq2i 3955 |
. 2
⊢ (𝐴 ⊆ ℝ*
↔ 𝐴 ⊆ (ℝ
∪ {+∞, -∞})) |
25 | | 3orrot 1092 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∨ +∞
∈ 𝐴 ∨ -∞
∈ 𝐴) ↔ (+∞
∈ 𝐴 ∨ -∞
∈ 𝐴 ∨ 𝐴 ⊆
ℝ)) |
26 | | df-3or 1088 |
. . 3
⊢
((+∞ ∈ 𝐴
∨ -∞ ∈ 𝐴 ∨
𝐴 ⊆ ℝ) ↔
((+∞ ∈ 𝐴 ∨
-∞ ∈ 𝐴) ∨
𝐴 ⊆
ℝ)) |
27 | 25, 26 | bitri 275 |
. 2
⊢ ((𝐴 ⊆ ℝ ∨ +∞
∈ 𝐴 ∨ -∞
∈ 𝐴) ↔ ((+∞
∈ 𝐴 ∨ -∞
∈ 𝐴) ∨ 𝐴 ⊆
ℝ)) |
28 | 22, 24, 27 | 3imtr4i 292 |
1
⊢ (𝐴 ⊆ ℝ*
→ (𝐴 ⊆ ℝ
∨ +∞ ∈ 𝐴 ∨
-∞ ∈ 𝐴)) |