MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxr Structured version   Visualization version   GIF version

Theorem ssxr 11313
Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ssxr (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))

Proof of Theorem ssxr
StepHypRef Expression
1 df-pr 4632 . . . . . . 7 {+∞, -∞} = ({+∞} ∪ {-∞})
21ineq2i 4208 . . . . . 6 (𝐴 ∩ {+∞, -∞}) = (𝐴 ∩ ({+∞} ∪ {-∞}))
3 indi 4273 . . . . . 6 (𝐴 ∩ ({+∞} ∪ {-∞})) = ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞}))
42, 3eqtri 2753 . . . . 5 (𝐴 ∩ {+∞, -∞}) = ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞}))
5 disjsn 4716 . . . . . . . 8 ((𝐴 ∩ {+∞}) = ∅ ↔ ¬ +∞ ∈ 𝐴)
6 disjsn 4716 . . . . . . . 8 ((𝐴 ∩ {-∞}) = ∅ ↔ ¬ -∞ ∈ 𝐴)
75, 6anbi12i 626 . . . . . . 7 (((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
87biimpri 227 . . . . . 6 ((¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) → ((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅))
9 pm4.56 986 . . . . . 6 ((¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) ↔ ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
10 un00 4443 . . . . . 6 (((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅) ↔ ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞})) = ∅)
118, 9, 103imtr3i 290 . . . . 5 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞})) = ∅)
124, 11eqtrid 2777 . . . 4 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → (𝐴 ∩ {+∞, -∞}) = ∅)
13 reldisj 4452 . . . . 5 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅ ↔ 𝐴 ⊆ ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞})))
14 renfdisj 11304 . . . . . . . 8 (ℝ ∩ {+∞, -∞}) = ∅
15 disj3 4454 . . . . . . . 8 ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ℝ = (ℝ ∖ {+∞, -∞}))
1614, 15mpbi 229 . . . . . . 7 ℝ = (ℝ ∖ {+∞, -∞})
17 difun2 4481 . . . . . . 7 ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞}) = (ℝ ∖ {+∞, -∞})
1816, 17eqtr4i 2756 . . . . . 6 ℝ = ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞})
1918sseq2i 4007 . . . . 5 (𝐴 ⊆ ℝ ↔ 𝐴 ⊆ ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞}))
2013, 19bitr4di 288 . . . 4 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅ ↔ 𝐴 ⊆ ℝ))
2112, 20imbitrid 243 . . 3 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
2221orrd 861 . 2 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
23 df-xr 11282 . . 3 * = (ℝ ∪ {+∞, -∞})
2423sseq2i 4007 . 2 (𝐴 ⊆ ℝ*𝐴 ⊆ (ℝ ∪ {+∞, -∞}))
25 3orrot 1089 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴𝐴 ⊆ ℝ))
26 df-3or 1085 . . 3 ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴𝐴 ⊆ ℝ) ↔ ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
2725, 26bitri 274 . 2 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
2822, 24, 273imtr4i 291 1 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3o 1083   = wceq 1533  wcel 2098  cdif 3942  cun 3943  cin 3944  wss 3945  c0 4323  {csn 4629  {cpr 4631  cr 11137  +∞cpnf 11275  -∞cmnf 11276  *cxr 11277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-resscn 11195
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282
This theorem is referenced by:  xrsupss  13320  xrinfmss  13321  xrssre  44793
  Copyright terms: Public domain W3C validator