Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3an2 Structured version   Visualization version   GIF version

Theorem df3an2 41266
Description: Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.)
Assertion
Ref Expression
df3an2 ((𝜑𝜓𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒)))

Proof of Theorem df3an2
StepHypRef Expression
1 df-3an 1087 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 df-an 396 . . 3 (((𝜑𝜓) ∧ 𝜒) ↔ ¬ ((𝜑𝜓) → ¬ 𝜒))
3 impexp 450 . . 3 (((𝜑𝜓) → ¬ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒)))
42, 3xchbinx 333 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒)))
51, 4bitri 274 1 ((𝜑𝜓𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator