| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistan 567 pm4.14 806 nan 829 pm4.87 843 pm5.6 1003 2sb6 2087 r2allem 3122 r3al 3176 r19.23t 3234 ceqsralt 3485 rspc2gv 3601 ralrab 3668 ralrab2 3672 euind 3698 reu2 3699 reu3 3701 rmo4 3704 rmo3f 3708 reuind 3727 2reu5lem3 3731 rmo2 3853 rmo3 3855 rmoanim 3860 rmoanimALT 3861 ralss 4024 ralssOLD 4026 rabss 4038 raldifb 4115 ralin 4215 rabsssn 4635 raldifsni 4762 unissb 4906 unissbOLD 4907 elintrab 4927 ssintrab 4938 dftr5 5221 dftr5OLD 5222 axrep5 5245 reusv2lem4 5359 reusv2 5361 reusv3 5363 raliunxp 5806 dfpo2 6272 fununi 6594 fvn0ssdmfun 7049 dff13 7232 ordunisuc2 7823 dfom2 7847 frpoins3xpg 8122 frpoins3xp3g 8123 xpord2indlem 8129 xpord3inddlem 8136 dfsmo2 8319 qliftfun 8778 dfsup2 9402 wemapsolem 9510 iscard2 9936 acnnum 10012 aceq1 10077 dfac9 10097 dfacacn 10102 axgroth6 10788 sstskm 10802 infm3 12149 prime 12622 raluz 12862 raluz2 12863 nnwos 12881 ralrp 12980 facwordi 14261 cotr2g 14949 rexuzre 15326 limsupgle 15450 ello12 15489 elo12 15500 lo1resb 15537 rlimresb 15538 o1resb 15539 modfsummod 15767 isprm2 16659 isprm4 16661 isprm7 16685 acsfn2 17631 pgpfac1 20019 isirred2 20337 isdomn2OLD 20628 isdomn3 20631 islindf4 21754 coe1fzgsumd 22198 evl1gsumd 22251 ist1-2 23241 isnrm2 23252 dfconn2 23313 1stccn 23357 iskgen3 23443 hausdiag 23539 cnflf 23896 txflf 23900 cnfcf 23936 metcnp 24436 caucfil 25190 ovolgelb 25388 ismbl 25434 dyadmbllem 25507 itg2leub 25642 ellimc3 25787 mdegleb 25976 jensen 26906 dchrelbas2 27155 dchrelbas3 27156 eqscut2 27725 onsis 28179 nmoubi 30708 nmobndseqi 30715 nmobndseqiALT 30716 h1dei 31486 nmopub 31844 nmfnleub 31861 mdsl1i 32257 mdsl2i 32258 elat2 32276 rabsspr 32437 rabsstp 32438 islinds5 33345 islbs5 33358 eulerpartlemgvv 34374 bnj115 34722 bnj1109 34783 bnj1533 34849 bnj580 34910 bnj864 34919 bnj865 34920 bnj1049 34971 bnj1090 34976 bnj1093 34977 bnj1133 34986 bnj1171 34997 climuzcnv 35665 axextprim 35695 biimpexp 35711 dfon2lem8 35785 dffun10 35909 filnetlem4 36376 bj-substax12 36716 wl-2sb6d 37553 poimirlem25 37646 poimirlem30 37651 r2alan 38245 inxpss 38306 moantr 38353 isat3 39307 isltrn2N 40121 cdlemefrs29bpre0 40397 cdleme32fva 40438 sn-axrep5v 42211 dford4 43025 fnwe2lem2 43047 ifpidg 43487 ifpim23g 43491 elmapintrab 43572 undmrnresiss 43600 df3or2 43764 df3an2 43765 dfhe3 43771 dffrege76 43935 dffrege115 43974 ntrneiiso 44087 ismnushort 44297 pm11.62 44390 2sbc6g 44411 expcomdg 44497 impexpd 44510 dfvd2 44576 dfvd3 44588 modelac8prim 44989 rabssf 45120 2rexsb 47106 2rexrsb 47107 snlindsntor 48464 elbigo2 48545 exp12bd 48788 ralbidb 48792 ralbidc 48793 |
| Copyright terms: Public domain | W3C validator |