![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: imdistan 567 pm4.14 806 nan 829 pm4.87 842 pm5.6 1002 2sb6 2086 r2allem 3148 r3al 3203 r19.23t 3261 moelOLD 3413 ceqsralt 3524 rspc2gv 3645 ralrab 3715 ralrab2 3720 euind 3746 reu2 3747 reu3 3749 rmo4 3752 rmo3f 3756 reuind 3775 2reu5lem3 3779 rmo2 3909 rmo3 3911 rmoanim 3916 rmoanimALT 3917 ralss 4083 rabss 4095 raldifb 4172 rabsssn 4690 raldifsni 4820 unissb 4963 unissbOLD 4964 elintrab 4984 ssintrab 4995 dftr5 5287 dftr5OLD 5288 axrep5 5309 reusv2lem4 5419 reusv2 5421 reusv3 5423 raliunxp 5864 dfpo2 6327 fununi 6653 fvn0ssdmfun 7108 dff13 7292 ordunisuc2 7881 dfom2 7905 frpoins3xpg 8181 frpoins3xp3g 8182 xpord2indlem 8188 xpord3inddlem 8195 dfsmo2 8403 qliftfun 8860 dfsup2 9513 wemapsolem 9619 iscard2 10045 acnnum 10121 aceq1 10186 dfac9 10206 dfacacn 10211 axgroth6 10897 sstskm 10911 infm3 12254 prime 12724 raluz 12961 raluz2 12962 nnwos 12980 ralrp 13077 facwordi 14338 cotr2g 15025 rexuzre 15401 limsupgle 15523 ello12 15562 elo12 15573 lo1resb 15610 rlimresb 15611 o1resb 15612 modfsummod 15842 isprm2 16729 isprm4 16731 isprm7 16755 acsfn2 17721 pgpfac1 20124 isirred2 20447 isdomn2OLD 20734 isdomn3 20737 islindf4 21881 coe1fzgsumd 22329 evl1gsumd 22382 ist1-2 23376 isnrm2 23387 dfconn2 23448 1stccn 23492 iskgen3 23578 hausdiag 23674 cnflf 24031 txflf 24035 cnfcf 24071 metcnp 24575 caucfil 25336 ovolgelb 25534 ismbl 25580 dyadmbllem 25653 itg2leub 25789 ellimc3 25934 mdegleb 26123 jensen 27050 dchrelbas2 27299 dchrelbas3 27300 eqscut2 27869 nmoubi 30804 nmobndseqi 30811 nmobndseqiALT 30812 h1dei 31582 nmopub 31940 nmfnleub 31957 mdsl1i 32353 mdsl2i 32354 elat2 32372 rabsspr 32529 rabsstp 32530 islinds5 33360 islbs5 33373 eulerpartlemgvv 34341 bnj115 34701 bnj1109 34762 bnj1533 34828 bnj580 34889 bnj864 34898 bnj865 34899 bnj1049 34950 bnj1090 34955 bnj1093 34956 bnj1133 34965 bnj1171 34976 climuzcnv 35639 axextprim 35663 biimpexp 35679 dfon2lem8 35754 dffun10 35878 filnetlem4 36347 bj-substax12 36687 wl-2sb6d 37512 poimirlem25 37605 poimirlem30 37610 ralin 38204 r2alan 38205 inxpss 38267 moantr 38320 isat3 39263 isltrn2N 40077 cdlemefrs29bpre0 40353 cdleme32fva 40394 sn-axrep5v 42209 dford4 42986 fnwe2lem2 43008 ifpidg 43453 ifpim23g 43457 elmapintrab 43538 undmrnresiss 43566 df3or2 43730 df3an2 43731 dfhe3 43737 dffrege76 43901 dffrege115 43940 ntrneiiso 44053 ismnushort 44270 pm11.62 44363 2sbc6g 44384 expcomdg 44471 impexpd 44484 dfvd2 44550 dfvd3 44562 rabssf 45021 2rexsb 47016 2rexrsb 47017 snlindsntor 48200 elbigo2 48286 exp12bd 48529 ralbidb 48533 ralbidc 48534 |
Copyright terms: Public domain | W3C validator |