| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistan 567 pm4.14 806 nan 829 pm4.87 843 pm5.6 1003 2sb6 2091 r2allem 3121 r3al 3171 r19.23t 3229 ceqsralt 3472 rspc2gv 3583 ralrab 3649 ralrab2 3653 euind 3679 reu2 3680 reu3 3682 rmo4 3685 rmo3f 3689 reuind 3708 2reu5lem3 3712 rmo2 3834 rmo3 3836 rmoanim 3841 rmoanimALT 3842 ralss 4005 ralssOLD 4007 rabss 4019 raldifb 4098 ralin 4198 rabsssn 4620 raldifsni 4746 unissb 4891 elintrab 4910 ssintrab 4921 dftr5 5204 axrep5 5227 reusv2lem4 5341 reusv2 5343 reusv3 5345 raliunxp 5783 dfpo2 6248 fununi 6561 fvn0ssdmfun 7013 dff13 7194 ordunisuc2 7780 dfom2 7804 frpoins3xpg 8076 frpoins3xp3g 8077 xpord2indlem 8083 xpord3inddlem 8090 dfsmo2 8273 qliftfun 8732 dfsup2 9335 wemapsolem 9443 iscard2 9876 acnnum 9950 aceq1 10015 dfac9 10035 dfacacn 10040 axgroth6 10726 sstskm 10740 infm3 12088 prime 12560 raluz 12796 raluz2 12797 nnwos 12815 ralrp 12914 facwordi 14198 cotr2g 14885 rexuzre 15262 limsupgle 15386 ello12 15425 elo12 15436 lo1resb 15473 rlimresb 15474 o1resb 15475 modfsummod 15703 isprm2 16595 isprm4 16597 isprm7 16621 acsfn2 17571 pgpfac1 19996 isirred2 20341 isdomn2OLD 20629 isdomn3 20632 islindf4 21777 coe1fzgsumd 22220 evl1gsumd 22273 ist1-2 23263 isnrm2 23274 dfconn2 23335 1stccn 23379 iskgen3 23465 hausdiag 23561 cnflf 23918 txflf 23922 cnfcf 23958 metcnp 24457 caucfil 25211 ovolgelb 25409 ismbl 25455 dyadmbllem 25528 itg2leub 25663 ellimc3 25808 mdegleb 25997 jensen 26927 dchrelbas2 27176 dchrelbas3 27177 eqscut2 27748 onsis 28209 nmoubi 30754 nmobndseqi 30761 nmobndseqiALT 30762 h1dei 31532 nmopub 31890 nmfnleub 31907 mdsl1i 32303 mdsl2i 32304 elat2 32322 rabsspr 32483 rabsstp 32484 islinds5 33339 islbs5 33352 eulerpartlemgvv 34410 bnj115 34758 bnj1109 34819 bnj1533 34885 bnj580 34946 bnj864 34955 bnj865 34956 bnj1049 35007 bnj1090 35012 bnj1093 35013 bnj1133 35022 bnj1171 35033 climuzcnv 35736 axextprim 35766 biimpexp 35782 dfon2lem8 35853 dffun10 35977 filnetlem4 36446 bj-substax12 36786 wl-2sb6d 37623 poimirlem25 37705 poimirlem30 37710 r2alan 38306 inxpss 38369 moantr 38416 isat3 39426 isltrn2N 40239 cdlemefrs29bpre0 40515 cdleme32fva 40556 sn-axrep5v 42334 dford4 43146 fnwe2lem2 43168 ifpidg 43608 ifpim23g 43612 elmapintrab 43693 undmrnresiss 43721 df3or2 43885 df3an2 43886 dfhe3 43892 dffrege76 44056 dffrege115 44095 ntrneiiso 44208 ismnushort 44418 pm11.62 44511 2sbc6g 44532 expcomdg 44617 impexpd 44630 dfvd2 44696 dfvd3 44708 modelac8prim 45109 rabssf 45240 2rexsb 47225 2rexrsb 47226 snlindsntor 48596 elbigo2 48677 exp12bd 48920 ralbidb 48924 ralbidc 48925 |
| Copyright terms: Public domain | W3C validator |