| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistan 567 pm4.14 806 nan 829 pm4.87 843 pm5.6 1003 2sb6 2087 r2allem 3117 r3al 3167 r19.23t 3225 ceqsralt 3473 rspc2gv 3589 ralrab 3656 ralrab2 3660 euind 3686 reu2 3687 reu3 3689 rmo4 3692 rmo3f 3696 reuind 3715 2reu5lem3 3719 rmo2 3841 rmo3 3843 rmoanim 3848 rmoanimALT 3849 ralss 4012 ralssOLD 4014 rabss 4025 raldifb 4102 ralin 4202 rabsssn 4622 raldifsni 4749 unissb 4893 elintrab 4913 ssintrab 4924 dftr5 5206 axrep5 5229 reusv2lem4 5343 reusv2 5345 reusv3 5347 raliunxp 5786 dfpo2 6248 fununi 6561 fvn0ssdmfun 7012 dff13 7195 ordunisuc2 7784 dfom2 7808 frpoins3xpg 8080 frpoins3xp3g 8081 xpord2indlem 8087 xpord3inddlem 8094 dfsmo2 8277 qliftfun 8736 dfsup2 9353 wemapsolem 9461 iscard2 9891 acnnum 9965 aceq1 10030 dfac9 10050 dfacacn 10055 axgroth6 10741 sstskm 10755 infm3 12102 prime 12575 raluz 12815 raluz2 12816 nnwos 12834 ralrp 12933 facwordi 14214 cotr2g 14901 rexuzre 15278 limsupgle 15402 ello12 15441 elo12 15452 lo1resb 15489 rlimresb 15490 o1resb 15491 modfsummod 15719 isprm2 16611 isprm4 16613 isprm7 16637 acsfn2 17587 pgpfac1 19979 isirred2 20324 isdomn2OLD 20615 isdomn3 20618 islindf4 21763 coe1fzgsumd 22207 evl1gsumd 22260 ist1-2 23250 isnrm2 23261 dfconn2 23322 1stccn 23366 iskgen3 23452 hausdiag 23548 cnflf 23905 txflf 23909 cnfcf 23945 metcnp 24445 caucfil 25199 ovolgelb 25397 ismbl 25443 dyadmbllem 25516 itg2leub 25651 ellimc3 25796 mdegleb 25985 jensen 26915 dchrelbas2 27164 dchrelbas3 27165 eqscut2 27735 onsis 28195 nmoubi 30734 nmobndseqi 30741 nmobndseqiALT 30742 h1dei 31512 nmopub 31870 nmfnleub 31887 mdsl1i 32283 mdsl2i 32284 elat2 32302 rabsspr 32463 rabsstp 32464 islinds5 33314 islbs5 33327 eulerpartlemgvv 34343 bnj115 34691 bnj1109 34752 bnj1533 34818 bnj580 34879 bnj864 34888 bnj865 34889 bnj1049 34940 bnj1090 34945 bnj1093 34946 bnj1133 34955 bnj1171 34966 climuzcnv 35643 axextprim 35673 biimpexp 35689 dfon2lem8 35763 dffun10 35887 filnetlem4 36354 bj-substax12 36694 wl-2sb6d 37531 poimirlem25 37624 poimirlem30 37629 r2alan 38223 inxpss 38284 moantr 38331 isat3 39285 isltrn2N 40099 cdlemefrs29bpre0 40375 cdleme32fva 40416 sn-axrep5v 42189 dford4 43002 fnwe2lem2 43024 ifpidg 43464 ifpim23g 43468 elmapintrab 43549 undmrnresiss 43577 df3or2 43741 df3an2 43742 dfhe3 43748 dffrege76 43912 dffrege115 43951 ntrneiiso 44064 ismnushort 44274 pm11.62 44367 2sbc6g 44388 expcomdg 44474 impexpd 44487 dfvd2 44553 dfvd3 44565 modelac8prim 44966 rabssf 45097 2rexsb 47086 2rexrsb 47087 snlindsntor 48457 elbigo2 48538 exp12bd 48781 ralbidb 48785 ralbidc 48786 |
| Copyright terms: Public domain | W3C validator |