Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: imdistan 567 pm4.14 803 nan 826 pm4.87 839 pm5.6 998 2sb6 2090 r2allem 3123 r3al 3125 r19.23t 3241 moel 3349 ceqsralt 3453 rspc2gv 3561 ralrab 3623 ralrab2 3629 euind 3654 reu2 3655 reu3 3657 rmo4 3660 rmo3f 3664 reuind 3683 2reu5lem3 3687 rmo2 3816 rmo3 3818 rmoanim 3823 rmoanimALT 3824 ralss 3987 rabss 4001 raldifb 4075 rabsssn 4600 raldifsni 4725 unissb 4870 elintrab 4888 ssintrab 4899 dftr5 5190 axrep5 5211 reusv2lem4 5319 reusv2 5321 reusv3 5323 raliunxp 5737 dfpo2 6188 fununi 6493 fvn0ssdmfun 6934 dff13 7109 ordunisuc2 7666 dfom2 7689 dfsmo2 8149 qliftfun 8549 dfsup2 9133 wemapsolem 9239 iscard2 9665 acnnum 9739 aceq1 9804 dfac9 9823 dfacacn 9828 axgroth6 10515 sstskm 10529 infm3 11864 prime 12331 raluz 12565 raluz2 12566 nnwos 12584 ralrp 12679 facwordi 13931 cotr2g 14615 rexuzre 14992 limsupgle 15114 ello12 15153 elo12 15164 lo1resb 15201 rlimresb 15202 o1resb 15203 modfsummod 15434 isprm2 16315 isprm4 16317 isprm7 16341 acsfn2 17289 pgpfac1 19598 isirred2 19858 isdomn2 20483 islindf4 20955 coe1fzgsumd 21383 evl1gsumd 21433 ist1-2 22406 isnrm2 22417 dfconn2 22478 1stccn 22522 iskgen3 22608 hausdiag 22704 cnflf 23061 txflf 23065 cnfcf 23101 metcnp 23603 caucfil 24352 ovolgelb 24549 ismbl 24595 dyadmbllem 24668 itg2leub 24804 ellimc3 24948 mdegleb 25134 jensen 26043 dchrelbas2 26290 dchrelbas3 26291 nmoubi 29035 nmobndseqi 29042 nmobndseqiALT 29043 h1dei 29813 nmopub 30171 nmfnleub 30188 mdsl1i 30584 mdsl2i 30585 elat2 30603 islinds5 31465 eulerpartlemgvv 32243 bnj115 32604 bnj1109 32666 bnj1533 32732 bnj580 32793 bnj864 32802 bnj865 32803 bnj1049 32854 bnj1090 32859 bnj1093 32860 bnj1133 32869 bnj1171 32880 climuzcnv 33529 axextprim 33542 biimpexp 33561 dfon2lem8 33672 frpoins3xpg 33714 frpoins3xp3g 33715 xpord2ind 33721 xpord3ind 33727 eqscut2 33927 dffun10 34143 filnetlem4 34497 bj-substax12 34830 wl-2sb6d 35640 poimirlem25 35729 poimirlem30 35734 inxpss 36374 moantr 36421 isat3 37248 isltrn2N 38061 cdlemefrs29bpre0 38337 cdleme32fva 38378 sn-axrep5v 40113 dford4 40767 fnwe2lem2 40792 isdomn3 40945 ifpidg 40996 ifpim23g 41000 elmapintrab 41073 undmrnresiss 41101 df3or2 41265 df3an2 41266 dfhe3 41272 dffrege76 41436 dffrege115 41475 ntrneiiso 41590 ismnushort 41808 pm11.62 41901 2sbc6g 41922 expcomdg 42009 impexpd 42022 dfvd2 42088 dfvd3 42100 rabssf 42557 2rexsb 44480 2rexrsb 44481 snlindsntor 45700 elbigo2 45786 exp12bd 46029 ralbidb 46033 ralbidc 46034 |
Copyright terms: Public domain | W3C validator |