| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistan 567 pm4.14 806 nan 829 pm4.87 843 pm5.6 1003 2sb6 2089 r2allem 3120 r3al 3170 r19.23t 3228 ceqsralt 3471 rspc2gv 3587 ralrab 3653 ralrab2 3657 euind 3683 reu2 3684 reu3 3686 rmo4 3689 rmo3f 3693 reuind 3712 2reu5lem3 3716 rmo2 3838 rmo3 3840 rmoanim 3845 rmoanimALT 3846 ralss 4009 ralssOLD 4011 rabss 4022 raldifb 4099 ralin 4199 rabsssn 4621 raldifsni 4747 unissb 4891 elintrab 4910 ssintrab 4921 dftr5 5202 axrep5 5225 reusv2lem4 5339 reusv2 5341 reusv3 5343 raliunxp 5779 dfpo2 6243 fununi 6556 fvn0ssdmfun 7007 dff13 7188 ordunisuc2 7774 dfom2 7798 frpoins3xpg 8070 frpoins3xp3g 8071 xpord2indlem 8077 xpord3inddlem 8084 dfsmo2 8267 qliftfun 8726 dfsup2 9328 wemapsolem 9436 iscard2 9866 acnnum 9940 aceq1 10005 dfac9 10025 dfacacn 10030 axgroth6 10716 sstskm 10730 infm3 12078 prime 12551 raluz 12791 raluz2 12792 nnwos 12810 ralrp 12909 facwordi 14193 cotr2g 14880 rexuzre 15257 limsupgle 15381 ello12 15420 elo12 15431 lo1resb 15468 rlimresb 15469 o1resb 15470 modfsummod 15698 isprm2 16590 isprm4 16592 isprm7 16616 acsfn2 17566 pgpfac1 19992 isirred2 20337 isdomn2OLD 20625 isdomn3 20628 islindf4 21773 coe1fzgsumd 22217 evl1gsumd 22270 ist1-2 23260 isnrm2 23271 dfconn2 23332 1stccn 23376 iskgen3 23462 hausdiag 23558 cnflf 23915 txflf 23919 cnfcf 23955 metcnp 24454 caucfil 25208 ovolgelb 25406 ismbl 25452 dyadmbllem 25525 itg2leub 25660 ellimc3 25805 mdegleb 25994 jensen 26924 dchrelbas2 27173 dchrelbas3 27174 eqscut2 27745 onsis 28206 nmoubi 30747 nmobndseqi 30754 nmobndseqiALT 30755 h1dei 31525 nmopub 31883 nmfnleub 31900 mdsl1i 32296 mdsl2i 32297 elat2 32315 rabsspr 32476 rabsstp 32477 islinds5 33327 islbs5 33340 eulerpartlemgvv 34384 bnj115 34732 bnj1109 34793 bnj1533 34859 bnj580 34920 bnj864 34929 bnj865 34930 bnj1049 34981 bnj1090 34986 bnj1093 34987 bnj1133 34996 bnj1171 35007 climuzcnv 35703 axextprim 35733 biimpexp 35749 dfon2lem8 35823 dffun10 35947 filnetlem4 36414 bj-substax12 36754 wl-2sb6d 37591 poimirlem25 37684 poimirlem30 37689 r2alan 38283 inxpss 38344 moantr 38391 isat3 39345 isltrn2N 40158 cdlemefrs29bpre0 40434 cdleme32fva 40475 sn-axrep5v 42248 dford4 43061 fnwe2lem2 43083 ifpidg 43523 ifpim23g 43527 elmapintrab 43608 undmrnresiss 43636 df3or2 43800 df3an2 43801 dfhe3 43807 dffrege76 43971 dffrege115 44010 ntrneiiso 44123 ismnushort 44333 pm11.62 44426 2sbc6g 44447 expcomdg 44532 impexpd 44545 dfvd2 44611 dfvd3 44623 modelac8prim 45024 rabssf 45155 2rexsb 47131 2rexrsb 47132 snlindsntor 48502 elbigo2 48583 exp12bd 48826 ralbidb 48830 ralbidc 48831 |
| Copyright terms: Public domain | W3C validator |