Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 449 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 450 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imdistan 568 pm4.14 804 nan 827 pm4.87 840 pm5.6 999 2sb6 2088 r2allem 3135 r3al 3189 r19.23t 3234 moelOLD 3374 ceqsralt 3472 rspc2gv 3578 ralrab 3640 ralrab2 3645 euind 3670 reu2 3671 reu3 3673 rmo4 3676 rmo3f 3680 reuind 3699 2reu5lem3 3703 rmo2 3831 rmo3 3833 rmoanim 3838 rmoanimALT 3839 ralss 4002 rabss 4017 raldifb 4091 rabsssn 4615 raldifsni 4742 unissb 4887 unissbOLD 4888 elintrab 4908 ssintrab 4919 dftr5 5213 dftr5OLD 5214 axrep5 5235 reusv2lem4 5344 reusv2 5346 reusv3 5348 raliunxp 5781 dfpo2 6234 fununi 6559 fvn0ssdmfun 7008 dff13 7184 ordunisuc2 7758 dfom2 7782 dfsmo2 8248 qliftfun 8662 dfsup2 9301 wemapsolem 9407 iscard2 9833 acnnum 9909 aceq1 9974 dfac9 9993 dfacacn 9998 axgroth6 10685 sstskm 10699 infm3 12035 prime 12502 raluz 12737 raluz2 12738 nnwos 12756 ralrp 12851 facwordi 14104 cotr2g 14786 rexuzre 15163 limsupgle 15285 ello12 15324 elo12 15335 lo1resb 15372 rlimresb 15373 o1resb 15374 modfsummod 15605 isprm2 16484 isprm4 16486 isprm7 16510 acsfn2 17469 pgpfac1 19778 isirred2 20038 isdomn2 20676 islindf4 21151 coe1fzgsumd 21579 evl1gsumd 21629 ist1-2 22604 isnrm2 22615 dfconn2 22676 1stccn 22720 iskgen3 22806 hausdiag 22902 cnflf 23259 txflf 23263 cnfcf 23299 metcnp 23803 caucfil 24553 ovolgelb 24750 ismbl 24796 dyadmbllem 24869 itg2leub 25005 ellimc3 25149 mdegleb 25335 jensen 26244 dchrelbas2 26491 dchrelbas3 26492 eqscut2 27051 nmoubi 29422 nmobndseqi 29429 nmobndseqiALT 29430 h1dei 30200 nmopub 30558 nmfnleub 30575 mdsl1i 30971 mdsl2i 30972 elat2 30990 islinds5 31860 eulerpartlemgvv 32643 bnj115 33004 bnj1109 33065 bnj1533 33131 bnj580 33192 bnj864 33201 bnj865 33202 bnj1049 33253 bnj1090 33258 bnj1093 33259 bnj1133 33268 bnj1171 33279 climuzcnv 33928 axextprim 33941 biimpexp 33957 dfon2lem8 34049 frpoins3xpg 34069 frpoins3xp3g 34070 xpord2ind 34076 xpord3ind 34082 dffun10 34312 filnetlem4 34666 bj-substax12 34999 wl-2sb6d 35818 poimirlem25 35907 poimirlem30 35912 ralin 36511 r2alan 36512 inxpss 36577 moantr 36630 isat3 37574 isltrn2N 38388 cdlemefrs29bpre0 38664 cdleme32fva 38705 sn-axrep5v 40442 dford4 41114 fnwe2lem2 41139 isdomn3 41292 ifpidg 41420 ifpim23g 41424 elmapintrab 41505 undmrnresiss 41533 df3or2 41697 df3an2 41698 dfhe3 41704 dffrege76 41868 dffrege115 41907 ntrneiiso 42022 ismnushort 42240 pm11.62 42333 2sbc6g 42354 expcomdg 42441 impexpd 42454 dfvd2 42520 dfvd3 42532 rabssf 42989 2rexsb 44944 2rexrsb 44945 snlindsntor 46163 elbigo2 46249 exp12bd 46492 ralbidb 46496 ralbidc 46497 |
Copyright terms: Public domain | W3C validator |