| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistan 567 pm4.14 806 nan 829 pm4.87 843 pm5.6 1003 2sb6 2086 r2allem 3128 r3al 3182 r19.23t 3238 moelOLD 3384 ceqsralt 3495 rspc2gv 3611 ralrab 3677 ralrab2 3681 euind 3707 reu2 3708 reu3 3710 rmo4 3713 rmo3f 3717 reuind 3736 2reu5lem3 3740 rmo2 3862 rmo3 3864 rmoanim 3869 rmoanimALT 3870 ralss 4033 ralssOLD 4035 rabss 4047 raldifb 4124 ralin 4224 rabsssn 4644 raldifsni 4771 unissb 4915 unissbOLD 4916 elintrab 4936 ssintrab 4947 dftr5 5233 dftr5OLD 5234 axrep5 5257 reusv2lem4 5371 reusv2 5373 reusv3 5375 raliunxp 5819 dfpo2 6285 fununi 6610 fvn0ssdmfun 7063 dff13 7246 ordunisuc2 7837 dfom2 7861 frpoins3xpg 8137 frpoins3xp3g 8138 xpord2indlem 8144 xpord3inddlem 8151 dfsmo2 8359 qliftfun 8814 dfsup2 9454 wemapsolem 9562 iscard2 9988 acnnum 10064 aceq1 10129 dfac9 10149 dfacacn 10154 axgroth6 10840 sstskm 10854 infm3 12199 prime 12672 raluz 12910 raluz2 12911 nnwos 12929 ralrp 13027 facwordi 14305 cotr2g 14993 rexuzre 15369 limsupgle 15491 ello12 15530 elo12 15541 lo1resb 15578 rlimresb 15579 o1resb 15580 modfsummod 15808 isprm2 16699 isprm4 16701 isprm7 16725 acsfn2 17673 pgpfac1 20061 isirred2 20379 isdomn2OLD 20670 isdomn3 20673 islindf4 21796 coe1fzgsumd 22240 evl1gsumd 22293 ist1-2 23283 isnrm2 23294 dfconn2 23355 1stccn 23399 iskgen3 23485 hausdiag 23581 cnflf 23938 txflf 23942 cnfcf 23978 metcnp 24478 caucfil 25233 ovolgelb 25431 ismbl 25477 dyadmbllem 25550 itg2leub 25685 ellimc3 25830 mdegleb 26019 jensen 26949 dchrelbas2 27198 dchrelbas3 27199 eqscut2 27768 nmoubi 30699 nmobndseqi 30706 nmobndseqiALT 30707 h1dei 31477 nmopub 31835 nmfnleub 31852 mdsl1i 32248 mdsl2i 32249 elat2 32267 rabsspr 32428 rabsstp 32429 islinds5 33328 islbs5 33341 eulerpartlemgvv 34354 bnj115 34702 bnj1109 34763 bnj1533 34829 bnj580 34890 bnj864 34899 bnj865 34900 bnj1049 34951 bnj1090 34956 bnj1093 34957 bnj1133 34966 bnj1171 34977 climuzcnv 35639 axextprim 35664 biimpexp 35680 dfon2lem8 35754 dffun10 35878 filnetlem4 36345 bj-substax12 36685 wl-2sb6d 37522 poimirlem25 37615 poimirlem30 37620 r2alan 38213 inxpss 38275 moantr 38328 isat3 39271 isltrn2N 40085 cdlemefrs29bpre0 40361 cdleme32fva 40402 sn-axrep5v 42213 dford4 43000 fnwe2lem2 43022 ifpidg 43462 ifpim23g 43466 elmapintrab 43547 undmrnresiss 43575 df3or2 43739 df3an2 43740 dfhe3 43746 dffrege76 43910 dffrege115 43949 ntrneiiso 44062 ismnushort 44273 pm11.62 44366 2sbc6g 44387 expcomdg 44473 impexpd 44486 dfvd2 44552 dfvd3 44564 modelac8prim 44965 rabssf 45091 2rexsb 47078 2rexrsb 47079 snlindsntor 48395 elbigo2 48480 exp12bd 48723 ralbidb 48727 ralbidc 48728 |
| Copyright terms: Public domain | W3C validator |