![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 441 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 442 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 201 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: imdistan 563 pm5.3 568 pm4.14 797 nan 820 pm4.87 832 pm5.6 987 2sb6 2253 r2allem 3119 r3al 3122 r19.23t 3203 ceqsralt 3431 rspc2gv 3523 ralrab 3578 ralrab2 3582 euind 3605 reu2 3606 reu3 3608 rmo4 3611 rmo3f 3615 reuind 3628 2reu5lem3 3632 rmo2 3743 rmo3 3745 rmo3OLD 3746 ralss 3889 rabss 3900 raldifb 3973 rabsssn 4436 raldifsni 4559 unissb 4706 elintrab 4724 ssintrab 4735 dftr5 4992 axrep5 5014 reusv2lem4 5115 reusv2 5117 reusv3 5119 raliunxp 5509 fununi 6211 fvn0ssdmfun 6616 dff13 6786 ordunisuc2 7324 dfom2 7347 dfsmo2 7729 qliftfun 8117 dfsup2 8640 wemapsolem 8746 iscard2 9137 acnnum 9210 aceq1 9275 dfac9 9295 dfacacn 9300 axgroth6 9987 sstskm 10001 infm3 11340 prime 11814 raluz 12046 raluz2 12047 nnwos 12066 ralrp 12163 facwordi 13398 cotr2g 14128 rexuzre 14503 limsupgle 14620 ello12 14659 elo12 14670 lo1resb 14707 rlimresb 14708 o1resb 14709 modfsummod 14934 isprm2 15804 isprm4 15806 isprm7 15828 acsfn2 16713 pgpfac1 18870 isirred2 19092 isdomn2 19700 coe1fzgsumd 20072 evl1gsumd 20121 islindf4 20585 ist1-2 21563 isnrm2 21574 dfconn2 21635 1stccn 21679 iskgen3 21765 hausdiag 21861 cnflf 22218 txflf 22222 cnfcf 22258 metcnp 22758 caucfil 23493 ovolgelb 23688 ismbl 23734 dyadmbllem 23807 itg2leub 23942 ellimc3 24084 mdegleb 24265 jensen 25171 dchrelbas2 25418 dchrelbas3 25419 nmoubi 28203 nmobndseqi 28210 nmobndseqiALT 28211 h1dei 28985 nmopub 29343 nmfnleub 29360 mdsl1i 29756 mdsl2i 29757 elat2 29775 moel 29899 islinds5 30418 eulerpartlemgvv 31040 bnj115 31397 bnj1109 31460 bnj1533 31525 bnj580 31586 bnj864 31595 bnj865 31596 bnj1049 31645 bnj1090 31650 bnj1093 31651 bnj1133 31660 bnj1171 31671 climuzcnv 32166 axextprim 32179 biimpexp 32198 dfpo2 32243 dfon2lem8 32287 dffun10 32614 filnetlem4 32968 bj-axrep5 33373 wl-2sb6d 33938 wl-dfrmosb 33991 wl-dfrmov 33992 wl-dfrmof 33993 poimirlem25 34065 poimirlem30 34070 inxpss 34716 moantr 34760 isat3 35466 isltrn2N 36279 cdlemefrs29bpre0 36555 cdleme32fva 36596 dford4 38565 fnwe2lem2 38590 isdomn3 38751 ifpidg 38804 ifpim23g 38808 elmapintrab 38849 undmrnresiss 38877 df3or2 39027 df3an2 39028 dfhe3 39035 dffrege76 39199 dffrege115 39238 ntrneiiso 39355 pm11.62 39560 2sbc6g 39581 expcomdg 39670 impexpd 39683 dfvd2 39749 dfvd3 39761 rabssf 40241 2rexsb 42139 2rexrsb 42140 rmoanim 42147 snlindsntor 43285 elbigo2 43371 |
Copyright terms: Public domain | W3C validator |