![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 450 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 451 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: imdistan 569 pm4.14 806 nan 829 pm4.87 842 pm5.6 1001 2sb6 2090 r2allem 3143 r3al 3197 r19.23t 3253 moelOLD 3402 ceqsralt 3507 rspc2gv 3622 ralrab 3690 ralrab2 3695 euind 3721 reu2 3722 reu3 3724 rmo4 3727 rmo3f 3731 reuind 3750 2reu5lem3 3754 rmo2 3882 rmo3 3884 rmoanim 3889 rmoanimALT 3890 ralss 4055 rabss 4070 raldifb 4145 rabsssn 4671 raldifsni 4799 unissb 4944 unissbOLD 4945 elintrab 4965 ssintrab 4976 dftr5 5270 dftr5OLD 5271 axrep5 5292 reusv2lem4 5400 reusv2 5402 reusv3 5404 raliunxp 5840 dfpo2 6296 fununi 6624 fvn0ssdmfun 7077 dff13 7254 ordunisuc2 7833 dfom2 7857 frpoins3xpg 8126 frpoins3xp3g 8127 xpord2indlem 8133 xpord3inddlem 8140 dfsmo2 8347 qliftfun 8796 dfsup2 9439 wemapsolem 9545 iscard2 9971 acnnum 10047 aceq1 10112 dfac9 10131 dfacacn 10136 axgroth6 10823 sstskm 10837 infm3 12173 prime 12643 raluz 12880 raluz2 12881 nnwos 12899 ralrp 12994 facwordi 14249 cotr2g 14923 rexuzre 15299 limsupgle 15421 ello12 15460 elo12 15471 lo1resb 15508 rlimresb 15509 o1resb 15510 modfsummod 15740 isprm2 16619 isprm4 16621 isprm7 16645 acsfn2 17607 pgpfac1 19950 isirred2 20235 isdomn2 20915 islindf4 21393 coe1fzgsumd 21826 evl1gsumd 21876 ist1-2 22851 isnrm2 22862 dfconn2 22923 1stccn 22967 iskgen3 23053 hausdiag 23149 cnflf 23506 txflf 23510 cnfcf 23546 metcnp 24050 caucfil 24800 ovolgelb 24997 ismbl 25043 dyadmbllem 25116 itg2leub 25252 ellimc3 25396 mdegleb 25582 jensen 26493 dchrelbas2 26740 dchrelbas3 26741 eqscut2 27307 nmoubi 30025 nmobndseqi 30032 nmobndseqiALT 30033 h1dei 30803 nmopub 31161 nmfnleub 31178 mdsl1i 31574 mdsl2i 31575 elat2 31593 islinds5 32480 islbs5 32496 eulerpartlemgvv 33375 bnj115 33736 bnj1109 33797 bnj1533 33863 bnj580 33924 bnj864 33933 bnj865 33934 bnj1049 33985 bnj1090 33990 bnj1093 33991 bnj1133 34000 bnj1171 34011 climuzcnv 34656 axextprim 34670 biimpexp 34686 dfon2lem8 34762 dffun10 34886 filnetlem4 35266 bj-substax12 35599 wl-2sb6d 36423 poimirlem25 36513 poimirlem30 36518 ralin 37115 r2alan 37116 inxpss 37180 moantr 37233 isat3 38177 isltrn2N 38991 cdlemefrs29bpre0 39267 cdleme32fva 39308 sn-axrep5v 41033 dford4 41768 fnwe2lem2 41793 isdomn3 41946 ifpidg 42242 ifpim23g 42246 elmapintrab 42327 undmrnresiss 42355 df3or2 42519 df3an2 42520 dfhe3 42526 dffrege76 42690 dffrege115 42729 ntrneiiso 42842 ismnushort 43060 pm11.62 43153 2sbc6g 43174 expcomdg 43261 impexpd 43274 dfvd2 43340 dfvd3 43352 rabssf 43808 2rexsb 45809 2rexrsb 45810 snlindsntor 47152 elbigo2 47238 exp12bd 47481 ralbidb 47485 ralbidc 47486 |
Copyright terms: Public domain | W3C validator |