Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 449 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 450 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imdistan 568 pm4.14 804 nan 827 pm4.87 840 pm5.6 999 2sb6 2089 r2allem 3117 r3al 3119 r19.23t 3246 moel 3358 moelOLD 3359 ceqsralt 3463 rspc2gv 3569 ralrab 3630 ralrab2 3635 euind 3659 reu2 3660 reu3 3662 rmo4 3665 rmo3f 3669 reuind 3688 2reu5lem3 3692 rmo2 3820 rmo3 3822 rmoanim 3827 rmoanimALT 3828 ralss 3991 rabss 4005 raldifb 4079 rabsssn 4603 raldifsni 4728 unissb 4873 elintrab 4891 ssintrab 4902 dftr5 5194 axrep5 5215 reusv2lem4 5324 reusv2 5326 reusv3 5328 raliunxp 5748 dfpo2 6199 fununi 6509 fvn0ssdmfun 6952 dff13 7128 ordunisuc2 7691 dfom2 7714 dfsmo2 8178 qliftfun 8591 dfsup2 9203 wemapsolem 9309 iscard2 9734 acnnum 9808 aceq1 9873 dfac9 9892 dfacacn 9897 axgroth6 10584 sstskm 10598 infm3 11934 prime 12401 raluz 12636 raluz2 12637 nnwos 12655 ralrp 12750 facwordi 14003 cotr2g 14687 rexuzre 15064 limsupgle 15186 ello12 15225 elo12 15236 lo1resb 15273 rlimresb 15274 o1resb 15275 modfsummod 15506 isprm2 16387 isprm4 16389 isprm7 16413 acsfn2 17372 pgpfac1 19683 isirred2 19943 isdomn2 20570 islindf4 21045 coe1fzgsumd 21473 evl1gsumd 21523 ist1-2 22498 isnrm2 22509 dfconn2 22570 1stccn 22614 iskgen3 22700 hausdiag 22796 cnflf 23153 txflf 23157 cnfcf 23193 metcnp 23697 caucfil 24447 ovolgelb 24644 ismbl 24690 dyadmbllem 24763 itg2leub 24899 ellimc3 25043 mdegleb 25229 jensen 26138 dchrelbas2 26385 dchrelbas3 26386 nmoubi 29134 nmobndseqi 29141 nmobndseqiALT 29142 h1dei 29912 nmopub 30270 nmfnleub 30287 mdsl1i 30683 mdsl2i 30684 elat2 30702 islinds5 31563 eulerpartlemgvv 32343 bnj115 32704 bnj1109 32766 bnj1533 32832 bnj580 32893 bnj864 32902 bnj865 32903 bnj1049 32954 bnj1090 32959 bnj1093 32960 bnj1133 32969 bnj1171 32980 climuzcnv 33629 axextprim 33642 biimpexp 33659 dfon2lem8 33766 frpoins3xpg 33787 frpoins3xp3g 33788 xpord2ind 33794 xpord3ind 33800 eqscut2 34000 dffun10 34216 filnetlem4 34570 bj-substax12 34903 wl-2sb6d 35713 poimirlem25 35802 poimirlem30 35807 inxpss 36447 moantr 36494 isat3 37321 isltrn2N 38134 cdlemefrs29bpre0 38410 cdleme32fva 38451 sn-axrep5v 40185 dford4 40851 fnwe2lem2 40876 isdomn3 41029 ifpidg 41098 ifpim23g 41102 elmapintrab 41184 undmrnresiss 41212 df3or2 41376 df3an2 41377 dfhe3 41383 dffrege76 41547 dffrege115 41586 ntrneiiso 41701 ismnushort 41919 pm11.62 42012 2sbc6g 42033 expcomdg 42120 impexpd 42133 dfvd2 42199 dfvd3 42211 rabssf 42668 2rexsb 44593 2rexrsb 44594 snlindsntor 45812 elbigo2 45898 exp12bd 46141 ralbidb 46145 ralbidc 46146 |
Copyright terms: Public domain | W3C validator |