![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 450 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 451 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: imdistan 569 pm4.14 806 nan 829 pm4.87 842 pm5.6 1001 2sb6 2090 r2allem 3143 r3al 3197 r19.23t 3253 moelOLD 3402 ceqsralt 3507 rspc2gv 3622 ralrab 3690 ralrab2 3695 euind 3721 reu2 3722 reu3 3724 rmo4 3727 rmo3f 3731 reuind 3750 2reu5lem3 3754 rmo2 3882 rmo3 3884 rmoanim 3889 rmoanimALT 3890 ralss 4055 rabss 4070 raldifb 4145 rabsssn 4671 raldifsni 4799 unissb 4944 unissbOLD 4945 elintrab 4965 ssintrab 4976 dftr5 5270 dftr5OLD 5271 axrep5 5292 reusv2lem4 5400 reusv2 5402 reusv3 5404 raliunxp 5840 dfpo2 6296 fununi 6624 fvn0ssdmfun 7077 dff13 7254 ordunisuc2 7833 dfom2 7857 frpoins3xpg 8126 frpoins3xp3g 8127 xpord2indlem 8133 xpord3inddlem 8140 dfsmo2 8347 qliftfun 8796 dfsup2 9439 wemapsolem 9545 iscard2 9971 acnnum 10047 aceq1 10112 dfac9 10131 dfacacn 10136 axgroth6 10823 sstskm 10837 infm3 12173 prime 12643 raluz 12880 raluz2 12881 nnwos 12899 ralrp 12994 facwordi 14249 cotr2g 14923 rexuzre 15299 limsupgle 15421 ello12 15460 elo12 15471 lo1resb 15508 rlimresb 15509 o1resb 15510 modfsummod 15740 isprm2 16619 isprm4 16621 isprm7 16645 acsfn2 17607 pgpfac1 19950 isirred2 20235 isdomn2 20915 islindf4 21393 coe1fzgsumd 21826 evl1gsumd 21876 ist1-2 22851 isnrm2 22862 dfconn2 22923 1stccn 22967 iskgen3 23053 hausdiag 23149 cnflf 23506 txflf 23510 cnfcf 23546 metcnp 24050 caucfil 24800 ovolgelb 24997 ismbl 25043 dyadmbllem 25116 itg2leub 25252 ellimc3 25396 mdegleb 25582 jensen 26493 dchrelbas2 26740 dchrelbas3 26741 eqscut2 27308 nmoubi 30056 nmobndseqi 30063 nmobndseqiALT 30064 h1dei 30834 nmopub 31192 nmfnleub 31209 mdsl1i 31605 mdsl2i 31606 elat2 31624 islinds5 32511 islbs5 32527 eulerpartlemgvv 33406 bnj115 33767 bnj1109 33828 bnj1533 33894 bnj580 33955 bnj864 33964 bnj865 33965 bnj1049 34016 bnj1090 34021 bnj1093 34022 bnj1133 34031 bnj1171 34042 climuzcnv 34687 axextprim 34701 biimpexp 34717 dfon2lem8 34793 dffun10 34917 filnetlem4 35314 bj-substax12 35647 wl-2sb6d 36471 poimirlem25 36561 poimirlem30 36566 ralin 37163 r2alan 37164 inxpss 37228 moantr 37281 isat3 38225 isltrn2N 39039 cdlemefrs29bpre0 39315 cdleme32fva 39356 sn-axrep5v 41081 dford4 41816 fnwe2lem2 41841 isdomn3 41994 ifpidg 42290 ifpim23g 42294 elmapintrab 42375 undmrnresiss 42403 df3or2 42567 df3an2 42568 dfhe3 42574 dffrege76 42738 dffrege115 42777 ntrneiiso 42890 ismnushort 43108 pm11.62 43201 2sbc6g 43222 expcomdg 43309 impexpd 43322 dfvd2 43388 dfvd3 43400 rabssf 43856 2rexsb 45857 2rexrsb 45858 snlindsntor 47200 elbigo2 47286 exp12bd 47529 ralbidb 47533 ralbidc 47534 |
Copyright terms: Public domain | W3C validator |