![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: imdistan 567 pm4.14 807 nan 830 pm4.87 843 pm5.6 1003 2sb6 2083 r2allem 3139 r3al 3194 r19.23t 3252 moelOLD 3402 ceqsralt 3513 rspc2gv 3631 ralrab 3701 ralrab2 3706 euind 3732 reu2 3733 reu3 3735 rmo4 3738 rmo3f 3742 reuind 3761 2reu5lem3 3765 rmo2 3895 rmo3 3897 rmoanim 3902 rmoanimALT 3903 ralss 4069 rabss 4081 raldifb 4158 rabsssn 4672 raldifsni 4799 unissb 4943 unissbOLD 4944 elintrab 4964 ssintrab 4975 dftr5 5268 dftr5OLD 5269 axrep5 5292 reusv2lem4 5406 reusv2 5408 reusv3 5410 raliunxp 5852 dfpo2 6317 fununi 6642 fvn0ssdmfun 7093 dff13 7274 ordunisuc2 7864 dfom2 7888 frpoins3xpg 8163 frpoins3xp3g 8164 xpord2indlem 8170 xpord3inddlem 8177 dfsmo2 8385 qliftfun 8840 dfsup2 9481 wemapsolem 9587 iscard2 10013 acnnum 10089 aceq1 10154 dfac9 10174 dfacacn 10179 axgroth6 10865 sstskm 10879 infm3 12224 prime 12696 raluz 12935 raluz2 12936 nnwos 12954 ralrp 13052 facwordi 14324 cotr2g 15011 rexuzre 15387 limsupgle 15509 ello12 15548 elo12 15559 lo1resb 15596 rlimresb 15597 o1resb 15598 modfsummod 15826 isprm2 16715 isprm4 16717 isprm7 16741 acsfn2 17707 pgpfac1 20114 isirred2 20437 isdomn2OLD 20728 isdomn3 20731 islindf4 21875 coe1fzgsumd 22323 evl1gsumd 22376 ist1-2 23370 isnrm2 23381 dfconn2 23442 1stccn 23486 iskgen3 23572 hausdiag 23668 cnflf 24025 txflf 24029 cnfcf 24065 metcnp 24569 caucfil 25330 ovolgelb 25528 ismbl 25574 dyadmbllem 25647 itg2leub 25783 ellimc3 25928 mdegleb 26117 jensen 27046 dchrelbas2 27295 dchrelbas3 27296 eqscut2 27865 nmoubi 30800 nmobndseqi 30807 nmobndseqiALT 30808 h1dei 31578 nmopub 31936 nmfnleub 31953 mdsl1i 32349 mdsl2i 32350 elat2 32368 rabsspr 32528 rabsstp 32529 islinds5 33374 islbs5 33387 eulerpartlemgvv 34357 bnj115 34717 bnj1109 34778 bnj1533 34844 bnj580 34905 bnj864 34914 bnj865 34915 bnj1049 34966 bnj1090 34971 bnj1093 34972 bnj1133 34981 bnj1171 34992 climuzcnv 35655 axextprim 35680 biimpexp 35696 dfon2lem8 35771 dffun10 35895 filnetlem4 36363 bj-substax12 36703 wl-2sb6d 37538 poimirlem25 37631 poimirlem30 37636 ralin 38229 r2alan 38230 inxpss 38292 moantr 38345 isat3 39288 isltrn2N 40102 cdlemefrs29bpre0 40378 cdleme32fva 40419 sn-axrep5v 42233 dford4 43017 fnwe2lem2 43039 ifpidg 43480 ifpim23g 43484 elmapintrab 43565 undmrnresiss 43593 df3or2 43757 df3an2 43758 dfhe3 43764 dffrege76 43928 dffrege115 43967 ntrneiiso 44080 ismnushort 44296 pm11.62 44389 2sbc6g 44410 expcomdg 44497 impexpd 44510 dfvd2 44576 dfvd3 44588 rabssf 45058 2rexsb 47050 2rexrsb 47051 snlindsntor 48316 elbigo2 48401 exp12bd 48644 ralbidb 48648 ralbidc 48649 |
Copyright terms: Public domain | W3C validator |