| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 448 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 449 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistan 567 pm4.14 806 nan 829 pm4.87 843 pm5.6 1003 2sb6 2087 r2allem 3121 r3al 3175 r19.23t 3233 ceqsralt 3482 rspc2gv 3598 ralrab 3665 ralrab2 3669 euind 3695 reu2 3696 reu3 3698 rmo4 3701 rmo3f 3705 reuind 3724 2reu5lem3 3728 rmo2 3850 rmo3 3852 rmoanim 3857 rmoanimALT 3858 ralss 4021 ralssOLD 4023 rabss 4035 raldifb 4112 ralin 4212 rabsssn 4632 raldifsni 4759 unissb 4903 unissbOLD 4904 elintrab 4924 ssintrab 4935 dftr5 5218 dftr5OLD 5219 axrep5 5242 reusv2lem4 5356 reusv2 5358 reusv3 5360 raliunxp 5803 dfpo2 6269 fununi 6591 fvn0ssdmfun 7046 dff13 7229 ordunisuc2 7820 dfom2 7844 frpoins3xpg 8119 frpoins3xp3g 8120 xpord2indlem 8126 xpord3inddlem 8133 dfsmo2 8316 qliftfun 8775 dfsup2 9395 wemapsolem 9503 iscard2 9929 acnnum 10005 aceq1 10070 dfac9 10090 dfacacn 10095 axgroth6 10781 sstskm 10795 infm3 12142 prime 12615 raluz 12855 raluz2 12856 nnwos 12874 ralrp 12973 facwordi 14254 cotr2g 14942 rexuzre 15319 limsupgle 15443 ello12 15482 elo12 15493 lo1resb 15530 rlimresb 15531 o1resb 15532 modfsummod 15760 isprm2 16652 isprm4 16654 isprm7 16678 acsfn2 17624 pgpfac1 20012 isirred2 20330 isdomn2OLD 20621 isdomn3 20624 islindf4 21747 coe1fzgsumd 22191 evl1gsumd 22244 ist1-2 23234 isnrm2 23245 dfconn2 23306 1stccn 23350 iskgen3 23436 hausdiag 23532 cnflf 23889 txflf 23893 cnfcf 23929 metcnp 24429 caucfil 25183 ovolgelb 25381 ismbl 25427 dyadmbllem 25500 itg2leub 25635 ellimc3 25780 mdegleb 25969 jensen 26899 dchrelbas2 27148 dchrelbas3 27149 eqscut2 27718 onsis 28172 nmoubi 30701 nmobndseqi 30708 nmobndseqiALT 30709 h1dei 31479 nmopub 31837 nmfnleub 31854 mdsl1i 32250 mdsl2i 32251 elat2 32269 rabsspr 32430 rabsstp 32431 islinds5 33338 islbs5 33351 eulerpartlemgvv 34367 bnj115 34715 bnj1109 34776 bnj1533 34842 bnj580 34903 bnj864 34912 bnj865 34913 bnj1049 34964 bnj1090 34969 bnj1093 34970 bnj1133 34979 bnj1171 34990 climuzcnv 35658 axextprim 35688 biimpexp 35704 dfon2lem8 35778 dffun10 35902 filnetlem4 36369 bj-substax12 36709 wl-2sb6d 37546 poimirlem25 37639 poimirlem30 37644 r2alan 38238 inxpss 38299 moantr 38346 isat3 39300 isltrn2N 40114 cdlemefrs29bpre0 40390 cdleme32fva 40431 sn-axrep5v 42204 dford4 43018 fnwe2lem2 43040 ifpidg 43480 ifpim23g 43484 elmapintrab 43565 undmrnresiss 43593 df3or2 43757 df3an2 43758 dfhe3 43764 dffrege76 43928 dffrege115 43967 ntrneiiso 44080 ismnushort 44290 pm11.62 44383 2sbc6g 44404 expcomdg 44490 impexpd 44503 dfvd2 44569 dfvd3 44581 modelac8prim 44982 rabssf 45113 2rexsb 47102 2rexrsb 47103 snlindsntor 48460 elbigo2 48541 exp12bd 48784 ralbidb 48788 ralbidc 48789 |
| Copyright terms: Public domain | W3C validator |